7 Equivalence Relations

An important fundamental concept in algebra is the notion of an equivalence relation. These arise in many instances. We’ll use the idea in the next section, where we introduce modular integer rings.

Definition 7.1. Let \(X \) be a non-empty set. A relation on \(X \) is a subset of \(X \times X \).

Example 7.1. Let \(X \) be the set of real numbers. Let \(R \) be the relation defined by \((x, y) \in R \) iff \(x \leq y \). \(R \) contains elements such as \((1,1), (\pi, 4), \) and \((-7/3, 0)\), but does not contain \((2,1)\), since \(2 \leq 1 \). Note that \((x, x) \in R\) for each \(x \in X \), so we say that \(R \) is a reflexive relation. Also if \(x \leq y \) and \(y \leq z \) then \(x \leq z \). In particular if \((x, y), (y, z) \in R \) then \((x, z) \in R \). We say that the relation \(R \) is transitive. On the other hand, \((1, 2) \in R \), but \((2, 1) \notin R \), so \(R \) is not symmetric.

Definition 7.2. Let \(X \) be a non-empty set. A relation \(R \) on \(X \) is called an equivalence relation if

(i) \((x, x) \in R\) for every \(x \in X \) (\(R \) is reflexive),

(ii) if \((x, y) \in R \) then \((y, x) \in R \) (\(R \) is symmetric),

(iii) if \((x, y), (y, z) \in R \) then \((x, z) \in R \) (\(R \) is transitive).

If \(R \) is an equivalence relation on a set \(X \) then the equivalence class of an element \(x \in R \) is defined as the set of all elements in \(X \) that are equivalent to \(x \). We write

\[
[x] = \{ y \in X : (x, y) \in R \}.
\]

Example 7.2. Let \(R \) be the relation on \(\mathbb{Z} \) defined by \((x, y) \in R \) iff \(y - x \) is divisible by 6. Then \((x, x) \in R \) since \(x - x = 0 = 6 \cdot 0 \), and clearly if \(y - x \) is divisible by 6 then so is \(x - y \), so \(R \) is symmetric. Finally, if \(y - x = 6k_1 \) and \(z - y = 6k_2 \) then \(z - y + y - x = z - x = 6(k_1 + k_2) \), so \(R \) is transitive. We deduce that \(R \) is an equivalence relation on \(\mathbb{Z} \).

The equivalence class of 7 wrt \(R \) is \([7] = \{ y \in \mathbb{Z} : 6|(y - 7) \}\). Note that \(y - 7 = 6k \) for some \(k \) iff \(y = 7 + 6k = 1 + 6(k + 1) \), which holds iff \(y - 1 = 6(k + 1) \). In particular \(y \) is equivalent to 7 iff \(y \) is equivalent to 1. So \([7] = [1] \) wrt \(R \).

Observe that both 1 and 7 have the same equivalence class, and both give the same remainder upon division by 6. This is no coincidence. In fact in general if \((x, y) \in R \) then there is some \(k \) such that \(y = x + 6k \), so \(x \) and \(y \) have the same unique positive remainder in \(\{0, 1, 2, 3, 4, 5\} \). This gives another way to describe the equivalence class of \(x \) wrt \(R \):

\[
[x] = \{ x + 6k : k \in \mathbb{Z} \}.
\]

Let’s list the distinct equivalence classes of \(R \). Note that since there are just six distinct remainders wrt 6, there must be exactly 6 distinct equivalence classes \([x]\), as \(x \) runs over \(\mathbb{Z} \).

- \([0] = \{ 6k : k \in \mathbb{Z} \}\)
- \([1] = \{ 6k + 1 : k \in \mathbb{Z} \}\)
- \([2] = \{ 6k + 2 : k \in \mathbb{Z} \}\)
- \([3] = \{ 6k + 3 : k \in \mathbb{Z} \}\)
- \([4] = \{ 6k + 4 : k \in \mathbb{Z} \}\)
- \([5] = \{ 6k + 5 : k \in \mathbb{Z} \}\)

Note that every integer \(x \) gives some remainder in \(\{0, ..., 6\} \), so this is the complete list of equivalence classes of \(R \). Note also that the positive remainder produced in the application of the division algorithm to \(x \) and 6 is unique, so every pair of distinct equivalence classes has empty intersection. We say that the set of equivalence classes of \(R \) form a partition of \(X \).

Definition 7.3. Let \(X \) be a non-empty set. A partition of \(X \) is a collection \(\mathcal{P} \) of subsets of \(X \) such that:

(i) \(X \) is the union of the subsets \(P \in \mathcal{P} \),
(ii) \(P \cap Q = \{\} \) unless \(P = Q \) for any pair of subsets of \(X \) contained in \(P \).

In other words, \(P \) is a partition of \(X \) if \(X \) is the disjoint union of the subsets of \(X \) contained in \(P \).

We have the following connection between partitions and equivalence relations of a set.

Theorem 7.1. Let \(X \) be a non-empty set. Then every partition of \(X \) induces an equivalence relation on \(X \), and every equivalence relation induces a partition of \(X \).

Proof. Let \(R \) be an equivalence relation on \(X \). Let \(P \) be the collection of distinct equivalence classes of \(X \) wrt \(R \):

\[
P = \{ [x] : x \in X \}.
\]

It’s clear that the union of subsets \([x]\) of \(X \) in \(P \) is all of \(X \) as \(x \) ranges over \(X \). If \(z \in [x] \cap [y] \) then \((x, z), (y, z) \in R\), which, by symmetry and transitivity gives \((x, y) \in R\), so \([x] = [y]\). It follows that \(P \) is a partition of \(X \).

On the other hand if \(P \) is a partition of \(X \), define a relation \(R \) on \(X \) by \((x, y) \in R\) iff \(x \) and \(y \) belong to the same subset of \(X \) contained in \(P \). Clearly \(R \) is reflexive since the union of the subsets of \(X \) in \(P \) is \(X \). \(R \) is clearly symmetric, and finally if \(x, y \in P \) and \(y, z \in P \) then \(x, z \in P \), so \(R \) is transitive. \(\Box \)

Example 7.3. Let \(X = \{1, 2, 3, 4, 5\} \). Then

\[
P = \{\{1, 2, 3\}, \{4\}, \{5\}\}
\]

is a partition of \(X \). It is routine to check that the relation

\[
\{(1, 1), (1, 2), (1, 3), (2, 2), (2, 3),
(3, 3), (2, 1), (3, 1), (3, 2), (4, 4), (5, 5)\}
\]

satisfies the axioms of an equivalence relation.

Recall the Division Algorithm in \(\mathbb{Z} \):

Theorem 7.2. Let \(a, b \in \mathbb{Z}, b \neq 0 \). Then there exist unique \(m, r \in \mathbb{Z} \) such that

\[
a = mb + r, r < |b|.
\]

We say that \(r \) is a reminder of \(a \) modulo \(b \), or that \(r \) is found by reducing \(a \) wrt \(b \), and write \(\text{rem}_b(a) = r \).

Given a positive integer \(n \), the relation \(R \) on \(\mathbb{Z} \) defined by \((x, y) \in R\) if \(x \) and \(y \) have the same remainder modulo \(n \) is an equivalence relation. The equivalence class of \(x \) wrt this relation is the set

\[
[x] = \{nm + x : m \in \mathbb{Z} \} = \{y \in \mathbb{Z} : \text{rem}_n(y) = \text{rem}_n(x) \}.
\]

Since there are exactly \(n \) remainders modulo \(n \), namely \(0, 1, 2, ..., n-1 \), there are exactly \(n \) distinct equivalence classes in \(\mathbb{Z} \) wrt this relation.

\[
\begin{align*}
[0] &= \{nk : k \in \mathbb{Z} \} \\
[1] &= \{nk + 1 : k \in \mathbb{Z} \} \\
&\vdots \\
n-1 &= \{nk + (n-1) : k \in \mathbb{Z} \}
\end{align*}
\]

The set of all these classes forms a partition of \(\mathbb{Z} \):

\[
P = \{[0], [1], ..., [n-1]\}.
\]

In fact, as we’ll see in the next section, this set has a natural algebraic structure, forming a ring called the **ring of integers modulo** \(n \).