Path-transformations in probability and representation theory

Neil O'Connell

University of Warwick

Infinite-dimensional analysis and representation theory Bielefeld, December 2007

Joint work with Philippe Biane and Philippe Bougerol

・ロット (母) ・ ヨ) ・ コ)

Pitman's Theorem (1975)

If $(B(t), t \ge 0)$ is a one-dimensional Brownian motion, then

$$B(t) - 2 \inf_{s \leq t} B(s), \qquad t \geq 0$$

is a three-dimensional Bessel process.

・ 戸 ト ・ 三 ト ・ 三 ト

The Pitman transform

For continuous $\pi : [0, T] \to \mathbb{R}$ with $\pi(0) = 0$, define $\mathcal{P}\pi$ by $\mathcal{P}\pi(t) = \pi(t) - 2 \inf_{s \le t} \pi(s).$

イロト イポト イヨト イヨト

The Pitman transform

For continuous $\pi : [0, T] \to \mathbb{R}$ with $\pi(0) = 0$, define $\mathcal{P}\pi$ by $\mathcal{P}\pi(t) = \pi(t) - 2 \inf_{s \le t} \pi(s).$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

The Pitman transform

For continuous $\pi : [0, T] \to \mathbb{R}$ with $\pi(0) = 0$, define $\mathcal{P}\pi$ by $\mathcal{P}\pi(t) = \pi(t) - 2 \inf_{s \le t} \pi(s).$

イロト イポト イヨト イヨト

Let V be a finite-dimensional Euclidean space.

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

Let *V* be a finite-dimensional Euclidean space. $C_0^T(V) = \{ \text{ continuous paths } \eta : [0, T] \to V \text{ with } \eta(0) = 0 \}.$

Let *V* be a finite-dimensional Euclidean space. $C_0^T(V) = \{ \text{ continuous paths } \eta : [0, T] \rightarrow V \text{ with } \eta(0) = 0 \}.$ For $\alpha \in V$, set $\alpha^{\vee} = 2\alpha/(\alpha, \alpha)$.

Let *V* be a finite-dimensional Euclidean space. $C_0^T(V) = \{ \text{ continuous paths } \eta : [0, T] \to V \text{ with } \eta(0) = 0 \}.$ For $\alpha \in V$, set $\alpha^{\vee} = 2\alpha/(\alpha, \alpha)$. For $\eta \in C_0^T(V)$ and $\alpha \in V$, define $\mathcal{P}_{\alpha}\eta(t) = \eta(t) - \inf_{s \leq t} \alpha^{\vee}(\eta(s))\alpha, \qquad 0 \leq t \leq T.$

(日本)(日本)(日本)(日本)

Hyperplane reflections and the braid relations

For $\alpha \in V$, let s_{α} denote the reflection through α^{\perp} :

$$\mathbf{s}_{\alpha}\lambda = \lambda - \alpha^{\vee}(\lambda)\alpha.$$

(日本) (日本) (日本)

Hyperplane reflections and the braid relations

For $\alpha \in V$, let s_{α} denote the reflection through α^{\perp} :

$$\mathbf{s}_{\alpha}\lambda = \lambda - \alpha^{\vee}(\lambda)\alpha.$$

Let $\beta \in V$ with $(\alpha, \beta) = -\cos(\pi/n)$. Then

 $s_{\alpha}s_{\beta}s_{\alpha}\cdots = s_{\beta}s_{\alpha}s_{\beta}\cdots n$ terms

(ロ) (同) (E) (E) (E) (C)

Hyperplane reflections and the braid relations

For $\alpha \in V$, let s_{α} denote the reflection through α^{\perp} :

$$\mathbf{s}_{\alpha}\lambda = \lambda - \alpha^{\vee}(\lambda)\alpha.$$

Let $\beta \in V$ with $(\alpha, \beta) = -\cos(\pi/n)$. Then

$$s_{\alpha}s_{\beta}s_{\alpha}\cdots = s_{\beta}s_{\alpha}s_{\beta}\cdots n$$
 terms

Theorem:

$$\mathcal{P}_{\alpha}\mathcal{P}_{\beta}\mathcal{P}_{\alpha}\cdots=\mathcal{P}_{\beta}\mathcal{P}_{\alpha}\mathcal{P}_{\beta}\cdots$$
 n terms

Finite Coxeter groups

W = finite group of isometries on V $S = \{s_{\alpha}, \alpha \in \Delta\}$ generating set of 'simple' reflections

・ 戸 ト ・ 三 ト ・ 三 ト

э

Finite Coxeter groups

W = finite group of isometries on V $S = \{s_{\alpha}, \alpha \in \Delta\}$ generating set of 'simple' reflections If $\pi/n_{\alpha\beta}$ is the angle between hyperplanes α^{\perp} and β^{\perp} then

$$s_{lpha}^2 = 1$$
 $(s_{lpha}s_{eta})^{n_{lphaeta}} = 1$ $lpha, eta \in \Delta$

are the defining relations for W.

(日本)(日本)(日本)(日本)

Finite Coxeter groups

W = finite group of isometries on V $S = \{s_{\alpha}, \alpha \in \Delta\}$ generating set of 'simple' reflections If $\pi/n_{\alpha\beta}$ is the angle between hyperplanes α^{\perp} and β^{\perp} then

$$s_{lpha}^2 = 1$$
 $(s_{lpha}s_{eta})^{n_{lphaeta}} = 1$ $lpha, eta \in \Delta$

are the defining relations for W.

The (closure of)

$$C = \{\lambda \in V : (\alpha, \lambda) > 0, \forall \alpha \in \Delta\}$$

is a fundamental domain for the action of W on V.

- 同下 - ヨト - ヨト

Example

$$\begin{array}{l} \alpha = (\boldsymbol{e}_1 - \boldsymbol{e}_2)/\sqrt{2} \qquad \boldsymbol{W} = \langle \, \boldsymbol{s}_{\alpha}, \, \boldsymbol{s}_{\beta} \, \rangle \simeq \boldsymbol{S}_3 = \langle \, (12), \, (23) \, \rangle \\ \beta = (\boldsymbol{e}_2 - \boldsymbol{e}_3)/\sqrt{2} \end{array}$$

< 一型

물 에 제 문 어

æ

For each $w \in W$, we can define

$$\mathcal{P}_{\mathbf{W}} = \mathcal{P}_{\alpha_1} \cdots \mathcal{P}_{\alpha_k}$$

where $w = s_{\alpha_1} \cdots s_{\alpha_k}$ is *any* reduced decomposition of *w*.

The longest element

Let *W* be a finite Coxeter group with generating simple reflections $S = \{s_{\alpha}, \alpha \in \Delta\}$. The length of an element $w \in W$ is the minimal number of terms required to write *w* as a product of simple reflections. There is a unique $w_0 \in W$ of maximal length.

For example, the longest element in S_3 is

$$(13) = (12)(23)(12) = (23)(12)(23).$$

Some properties of \mathcal{P}_{w_0}

$$\blacktriangleright \mathcal{P}_{w_0}^2 = \mathcal{P}_{w_0}$$

Neil O'Connell Path-transforms in probability and rep. theory

ヘロア 人間 アメヨアメヨア

Some properties of \mathcal{P}_{w_0}

$$\blacktriangleright \mathcal{P}_{w_0}^2 = \mathcal{P}_{w_0}$$

Say $\pi \in C_0^T(V)$ is *dominant* if $\pi(s) \in \overline{C}$ for all $s \leq T$.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

э

Some properties of \mathcal{P}_{w_0}

$$\blacktriangleright \mathcal{P}^2_{w_0} = \mathcal{P}_{w_0}$$

Say $\pi \in C_0^T(V)$ is *dominant* if $\pi(s) \in \overline{C}$ for all $s \leq T$. For any $\eta \in C_0^T(V)$, $\mathcal{P}_{w_0}\eta$ is dominant.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

э

	· - ·				÷.		
	an	<u>.</u>			-		-
	_		_	í.	_	_	Ι.
							-
		\sim	X				
		-	<u> </u>				
_				÷.,			
		2		-			
_	1						-
_	2 2	.4	0			1	_

ļ	P		-				-	
, 1 1 1 1 1				2				
ļ					À	1		
Ĵ	4	/		ĥ	-		3	

* 		
-		
0	 	
	Vý	
-		

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへで

Let C be a convex cone in V.

・ 戸 ト ・ ヨ ト ・ ヨ ト

Let C be a convex cone in V.

Let $p_t^0(x, y)$ be the heat kernel on *C* with Dirichlet boundary conditions.

- 同下 - ヨト - ヨト

Let C be a convex cone in V.

Let $p_t^0(x, y)$ be the heat kernel on *C* with Dirichlet boundary conditions.

Biane (1993): There exists a unique (up to constant factors) positive p^0 -harmonic function *h* on *C*.

- 同下 - ヨト - ヨト

Let C be a convex cone in V.

Let $p_t^0(x, y)$ be the heat kernel on *C* with Dirichlet boundary conditions.

Biane (1993): There exists a unique (up to constant factors) positive p^0 -harmonic function *h* on *C*.

Brownian motion in the cone C is defined to be the corresponding Doob *h*-transform, with infinitessimal generator and transition density given respectively by

$$rac{1}{2}\Delta+
abla(\log h)\cdot
abla \qquad q_t(x,y)=rac{h(y)}{h(x)}
ho_t^0(x,y).$$

The three-dimensional Bessel Process

If $V = \mathbb{R}$ and $C = \mathbb{R}_+$ then

$$p_t^0(x, y) = p_t(x, y) - p_t(x, -y)$$
 $h(x) = x.$

Brownian motion in \mathbb{R}_+ is the three-dimensional Bessel process, with infinitessimal generator

$$\frac{1}{2}\frac{d}{dx^2} + \frac{1}{x}\frac{d}{dx}.$$

Brownian motion in a Weyl chamber

Let W be a finite Coxeter group acting on V with fundamental chamber C. Then

$$p_t^0(x,y) = \sum_{w \in W} \varepsilon(w) p_t(x,wy)$$
 $h(x) = \prod_{\alpha \in \Phi^+} (\alpha, x).$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

э.

Brownian motion in a Weyl chamber

Let W be a finite Coxeter group acting on V with fundamental chamber C. Then

$$p_t^0(x,y) = \sum_{w \in W} \varepsilon(w) p_t(x,wy)$$
 $h(x) = \prod_{\alpha \in \Phi^+} (\alpha, x).$

If $W = S_n$ and $V = \mathbb{R}^n$, the Brownian motion in *C* is distributed as the eigenvalue process of a Brownian motion in the Lie algebra of $n \times n$ Hermitian matrices.

<回>< E> < E> < E> = =

A generalisation of Pitman's theorem

Let W be a finite Coxeter group acting on V with fundamental chamber C.

Theorem. If η is a Brownian motion in *V* (with respect to some probability \mathbb{P} on $C_0^{\mathcal{T}}(V)$), then $\mathcal{P}_{w_0}\eta$ is a Brownian motion in *C*.

Representation-theoretic proof in Weyl group case; proof for the general case uses duality properties of \mathcal{P}_{w_0} .

(日本)(日本)(日本)(日本)

cf. Littelmann (1998), Berenstein and Zelevinsky (2001) Reduced decomposition $w_0 = s_{\alpha_1} \dots s_{\alpha_q}$

Set $\eta_q = \eta$ and, for $i \leq q$,

$$\eta_{i-1} = \mathcal{P}_{\alpha_i} \dots \mathcal{P}_{\alpha_q} \eta$$
 $x_i = -\inf_{T \ge t \ge 0} \alpha_i^{\vee}(\eta_i(t)).$

cf. Littelmann (1998), Berenstein and Zelevinsky (2001) Reduced decomposition $w_0 = s_{\alpha_1} \dots s_{\alpha_q}$ Set $\eta_a = \eta$ and, for $i \leq q$,

 $\eta_{i-1} = \mathcal{P}_{\alpha_i} \dots \mathcal{P}_{\alpha_q} \eta$ $x_i = -\inf_{T > t > 0} \alpha_i^{\vee}(\eta_i(t)).$

Then $\eta_0 = \mathcal{P}_{w_0}\eta$ and

$$\mathcal{P}_{w_0}\eta(T) = \eta(T) + \sum_{i=1}^{q} x_i \alpha_i.$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● のへで

cf. Littelmann (1998), Berenstein and Zelevinsky (2001) Reduced decomposition $w_0 = s_{\alpha_1} \dots s_{\alpha_q}$

Set $\eta_q = \eta$ and, for $i \leq q$,

$$\eta_{i-1} = \mathcal{P}_{\alpha_i} \dots \mathcal{P}_{\alpha_q} \eta$$
 $x_i = -\inf_{T \ge t \ge 0} \alpha_i^{\lor}(\eta_i(t)).$

Then $\eta_0 = \mathcal{P}_{w_0}\eta$ and

$$\mathcal{P}_{w_0}\eta(T) = \eta(T) + \sum_{i=1}^{q} x_i \alpha_i.$$

Let $\mathbf{i} = (\alpha_1, \dots, \alpha_q)$ and $\varrho_{\mathbf{i}}(\eta) = (x_1, \dots, x_q)$.

The mapping

$$\mathcal{P}_{w_0} \times \varrho_{\mathbf{i}} : C_0^{\mathcal{T}}(V) \to \bigcup_{\lambda \in \overline{C}} D^{\lambda} \times M_{\mathbf{i}}^{\lambda}$$

is a bijection, where D^{λ} is the set of dominant paths π with $\pi(T) = \lambda$ and M_i^{λ} is a (generalised) 'string polytope'

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶ 二 国

The mapping

$$\mathcal{P}_{w_0} imes arrho_{\mathbf{i}} : C_0^{\mathcal{T}}(V)
ightarrow igcup_{\lambda \in \overline{C}} D^\lambda imes M_{\mathbf{i}}^\lambda$$

is a bijection, where D^{λ} is the set of dominant paths π with $\pi(T) = \lambda$ and M_i^{λ} is a (generalised) 'string polytope'

In the type A case, for suitable i, M^λ_i is essentially the set of Gelfand-Tsetlin patterns with bottom row λ and the restricton of P_{w0} × ρ_i to 'lattice paths' is equivalent to RSK:

 $D^{\lambda} \simeq$ standard tableaux with shape λ

 $M_{\rm i}^{\lambda} \simeq$ semistandard tableaux with shape λ

Littelmann's path model

Suppose *W* is a Weyl group. Let $P = \{ \mu \in V : \alpha^{\lor}(\mu) \in \mathbb{Z}, \forall \alpha \in \Delta \}, P_+ = P \cap \overline{C}$ Let π be dominant with $\pi(T) = \lambda \in P_+$ and *integral*:

$$\inf_{\boldsymbol{s} \leq T} \alpha^{\vee}(\pi(\boldsymbol{s})) \in \mathbb{Z} \qquad \forall \alpha \text{ simple.}$$

Raising/lowering operators e_{α} , f_{α} generate path module B_{π} Then, for example,

dim
$$\lambda = |B_{\pi}|, \qquad M_{\mu}^{\lambda} = |\{\eta \in B_{\pi} : \eta(T) = \mu\}|.$$

Similar formulae for the Littlewood-Richardson coefficients. From the definition, $\mathcal{P}_{\alpha} = e_{\alpha}^{MAX}$.

< ∃⇒

Neil O'Connell Path-transforms in probability and rep. theory

< ∃⇒

< ∃ >

Connection with the Pitman transform

<ロト <回 > < 回 > < 回 > .

э

Connection with the Pitman transform

Neil O'Connell Path-transforms in probability and rep. theory

æ

Connection with the Pitman transform

э

Theorem. Setting $L_{\pi} := \mathcal{P}_{w_0}^{-1} \pi$ we have

$$\mathcal{B}_{\pi} = \{\eta \in \mathcal{L}_{\pi} : \ \varrho_{\mathbf{i}}(\eta) \in \mathbb{N}^{q}\}.$$

(日)

Theorem. Setting $L_{\pi} := \mathcal{P}_{w_0}^{-1} \pi$ we have

$$B_{\pi} = \{\eta \in L_{\pi} : \varrho_{\mathbf{i}}(\eta) \in \mathbb{N}^{q}\}.$$

Littelmann (1998) showed that

$$\varrho_{\mathbf{i}}(B_{\pi}) = C_{\mathbf{i}} \cap \mathbb{N}^q \cap K_{\pi}$$

where

$$\mathcal{K}_{\pi} = \left\{ x \in \mathbb{R}^{q}_{+} : \ \mathbf{0} \leq x_{i} \leq \alpha_{i}^{\vee} \left(\pi(T) - \sum_{j=1}^{i-1} x_{j} \alpha_{j} \right), \ i = 1, \ldots, q \right\},\$$

and C_i is a convex polyhedral cone in \mathbb{R}^q . Berenstein and Zelevinsky (2001) give an explicit description of C_i .

・ロット (母) ・ ヨ) ・ ・ ヨ)

э

• We show that in the general case, if $\pi(T) = \lambda$,

$$M_{\mathbf{i}}^{\lambda} := \varrho_{\mathbf{i}}(L_{\pi}) = C_{\mathbf{i}} \cap K_{\pi}$$

with K_{π} as before and $C_{\mathbf{i}}$ a convex polyhedral cone in \mathbb{R}^{q} . In particular, $\varrho_{\mathbf{i}}(L_{\pi})$ depends only on the endpoint λ .

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

• We show that in the general case, if $\pi(T) = \lambda$,

$$M_{\mathbf{i}}^{\lambda} := \varrho_{\mathbf{i}}(L_{\pi}) = C_{\mathbf{i}} \cap K_{\pi}$$

with K_{π} as before and C_i a convex polyhedral cone in \mathbb{R}^q . In particular, $\varrho_i(L_{\pi})$ depends only on the endpoint λ .

Moreover, as in the Weyl goup case, the string parameters corresponding to one decomposition determine those of another via a piecewise linear continuous map (which does not depend on the path).

Theorem. Let η be a standard Brownian motion in *V*.

< 日 > < 回 > < 回 > < 回 > < 回 > <

Theorem. Let η be a standard Brownian motion in *V*.

► The conditional law of $\rho_i(\eta)$, given $(\mathcal{P}_{w_0}\eta(s), s \leq T)$ and $\mathcal{P}_{w_0}\eta(T) = \lambda$, is almost surely uniform on M_i^{λ} .

・ロン ・四 と ・ 回 と ・ 日

Theorem. Let η be a standard Brownian motion in *V*.

- ► The conditional law of $\rho_i(\eta)$, given $(\mathcal{P}_{w_0}\eta(s), s \leq T)$ and $\mathcal{P}_{w_0}\eta(T) = \lambda$, is almost surely uniform on M_i^{λ} .
- The conditional law of η(T), given (P_{w₀}η(s), s ≤ T) and P_{w₀}η(T) = λ, depends only on λ; denoting this law by μ^λ_{DH},

$$\int_{V} e^{(z,v)} \mu_{DH}^{\lambda}(dv) = k \frac{\sum_{w \in W} (-1)^{w} e^{(wz,\lambda)}}{h(z)h(\lambda)} \qquad z \in V^{*}.$$

Theorem. Let η be a standard Brownian motion in *V*.

- ► The conditional law of $\rho_i(\eta)$, given $(\mathcal{P}_{w_0}\eta(s), s \leq T)$ and $\mathcal{P}_{w_0}\eta(T) = \lambda$, is almost surely uniform on M_i^{λ} .
- The conditional law of η(T), given (P_{w₀}η(s), s ≤ T) and P_{w₀}η(T) = λ, depends only on λ; denoting this law by μ^λ_{DH},

$$\int_{V} e^{(z,v)} \mu_{DH}^{\lambda}(dv) = k \frac{\sum_{w \in W} (-1)^{w} e^{(wz,\lambda)}}{h(z)h(\lambda)} \qquad z \in V^{*}.$$

μ^λ_{DH} is supported on the convex hull of Wλ and has a continuous, piecewise polynomial density.

DH measure for A₂

From:

Valery Alexeev, Michel Brion. Toric degenerations of spherical varieties. (math.AG/0403379), and

S. Morier-Genoud. Geometric lifting of the canonical basis and semitoric degenerations of Richardson varieties.

(math.RT/0504538).

イロト イヨト イヨト イヨト

æ

DH measure for I(5) (with $\lambda \in \partial C$)

Neil O'Connell Path-transforms in probability and rep. theory

<ロ> <同> <同> < 同> < 同> < 同> 、

Generalisation of Greene's formula

æ

- Generalisation of Greene's formula
- Duality properties, connections with queueing theory

・ロット (母) ・ ヨ) ・ ・ ヨ)

- Generalisation of Greene's formula
- Duality properties, connections with queueing theory
- Crystal / plactic monoid structure

・ 戸 ト ・ 三 ト ・ 三 ト

- Generalisation of Greene's formula
- Duality properties, connections with queueing theory
- Crystal / plactic monoid structure
- Geometric lifting / tropicalisation

References

A. Berenstein and A. Zelevinsky. Tensor product multiplicities, canonical bases and totally positive varieties. *Invent. Math.* 143 (2001), no. 1, 77–128.

Ph. Biane, Ph. Bougerol, N. O'Connell. Littelmann paths and Brownian paths. *Duke Math. J.* 130 (2005) 127–167.

Ph. Biane, Ph. Bougerol, N. O'Connell. Continuous crystals and Duistermaat-Heckman measure for Coxeter groups. In preparation.

G. J. Heckman. Projections of orbits and asymptotic behavior of multiplicities for compact connected Lie groups. *Invent. Math.* 67 (1982), no. 2, 333–356.

P. Littelmann. Cones, crystals, and patterns. *Transform. Groups* 3 (1998), no. 2, 145–179.

J.W. Pitman. One-dimensional Brownian motion and the three-dimensional Bessel process. *Adv. Appl. Probab.* 7 (1975) 511-526.