Path-transformations in probability and representation theory

Neil O'Connell

University of Warwick

Infinite-dimensional analysis and representation theory Bielefeld, December 2007

Joint work with Philippe Biane and Philippe Bougerol

Pitman's Theorem (1975)

If $(B(t), t \geq 0)$ is a one-dimensional Brownian motion, then

$$
B(t)-2 \inf _{s \leq t} B(s), \quad t \geq 0
$$

is a three-dimensional Bessel process.

The Pitman transform

For continuous $\pi:[0, T] \rightarrow \mathbb{R}$ with $\pi(0)=0$, define $\mathcal{P} \pi$ by

$$
\mathcal{P} \pi(t)=\pi(t)-2 \inf _{s \leq t} \pi(s) .
$$

The Pitman transform

For continuous $\pi:[0, T] \rightarrow \mathbb{R}$ with $\pi(0)=0$, define $\mathcal{P} \pi$ by

$$
\mathcal{P} \pi(t)=\pi(t)-2 \inf _{s \leq t} \pi(s) .
$$

The Pitman transform

For continuous $\pi:[0, T] \rightarrow \mathbb{R}$ with $\pi(0)=0$, define $\mathcal{P} \pi$ by

$$
\mathcal{P} \pi(t)=\pi(t)-2 \inf _{s \leq t} \pi(s) .
$$

Generalised Pitman Transforms

Let V be a finite-dimensional Euclidean space.

Generalised Pitman Transforms

Let V be a finite-dimensional Euclidean space.
$C_{0}^{T}(V)=\{$ continuous paths $\eta:[0, T] \rightarrow V$ with $\eta(0)=0\}$.

Generalised Pitman Transforms

Let V be a finite-dimensional Euclidean space.
$C_{0}^{T}(V)=\{$ continuous paths $\eta:[0, T] \rightarrow V$ with $\eta(0)=0\}$.
For $\alpha \in V$, set $\alpha^{V}=2 \alpha /(\alpha, \alpha)$.

Generalised Pitman Transforms

Let V be a finite-dimensional Euclidean space.
$C_{0}^{T}(V)=\{$ continuous paths $\eta:[0, T] \rightarrow V$ with $\eta(0)=0\}$.
For $\alpha \in V$, set $\alpha^{V}=2 \alpha /(\alpha, \alpha)$.
For $\eta \in C_{0}^{T}(V)$ and $\alpha \in V$, define

$$
\mathcal{P}_{\alpha} \eta(t)=\eta(t)-\inf _{s \leq t} \alpha^{\vee}(\eta(s)) \alpha, \quad 0 \leq t \leq T .
$$

Hyperplane reflections and the braid relations

For $\alpha \in V$, let s_{α} denote the reflection through α^{\perp} :

$$
\boldsymbol{s}_{\alpha} \lambda=\lambda-\alpha^{\vee}(\lambda) \alpha .
$$

Hyperplane reflections and the braid relations

For $\alpha \in V$, let s_{α} denote the reflection through α^{\perp} :

$$
\boldsymbol{s}_{\alpha} \lambda=\lambda-\alpha^{\vee}(\lambda) \alpha
$$

Let $\beta \in V$ with $(\alpha, \beta)=-\cos (\pi / n)$. Then

$$
s_{\alpha} s_{\beta} s_{\alpha} \cdots=s_{\beta} s_{\alpha} s_{\beta} \cdots \quad n \text { terms }
$$

Hyperplane reflections and the braid relations

For $\alpha \in V$, let s_{α} denote the reflection through α^{\perp} :

$$
\boldsymbol{s}_{\alpha} \lambda=\lambda-\alpha^{\vee}(\lambda) \alpha
$$

Let $\beta \in V$ with $(\alpha, \beta)=-\cos (\pi / n)$. Then

$$
s_{\alpha} s_{\beta} s_{\alpha} \cdots=s_{\beta} s_{\alpha} s_{\beta} \cdots \quad n \text { terms }
$$

Theorem:

$$
\mathcal{P}_{\alpha} \mathcal{P}_{\beta} \mathcal{P}_{\alpha} \cdots=\mathcal{P}_{\beta} \mathcal{P}_{\alpha} \mathcal{P}_{\beta} \cdots \quad n \text { terms }
$$

Finite Coxeter groups

$W=$ finite group of isometries on V
$S=\left\{s_{\alpha}, \alpha \in \Delta\right\}$ generating set of 'simple' reflections

Finite Coxeter groups

$W=$ finite group of isometries on V
$S=\left\{s_{\alpha}, \alpha \in \Delta\right\}$ generating set of 'simple' reflections
If $\pi / n_{\alpha \beta}$ is the angle between hyperplanes α^{\perp} and β^{\perp} then

$$
s_{\alpha}^{2}=1 \quad\left(s_{\alpha} s_{\beta}\right)^{n_{\alpha \beta}}=1 \quad \alpha, \beta \in \Delta
$$

are the defining relations for W.

Finite Coxeter groups

$W=$ finite group of isometries on V
$S=\left\{s_{\alpha}, \alpha \in \Delta\right\}$ generating set of 'simple' reflections
If $\pi / n_{\alpha \beta}$ is the angle between hyperplanes α^{\perp} and β^{\perp} then

$$
s_{\alpha}^{2}=1 \quad\left(s_{\alpha} s_{\beta}\right)^{n_{\alpha \beta}}=1 \quad \alpha, \beta \in \Delta
$$

are the defining relations for W.
The (closure of)

$$
\boldsymbol{C}=\{\lambda \in V:(\alpha, \lambda)>0, \forall \alpha \in \Delta\}
$$

is a fundamental domain for the action of W on V.

Example

$$
\begin{aligned}
& \alpha=\left(e_{1}-e_{2}\right) / \sqrt{2} \quad W=\left\langle s_{\alpha}, s_{\beta}\right\rangle \simeq S_{3}=\langle(12),(23)\rangle \\
& \beta=\left(e_{2}-e_{3}\right) / \sqrt{2}
\end{aligned}
$$

Generalised Pitman Transforms II

For each $w \in W$, we can define

$$
\mathcal{P}_{w}=\mathcal{P}_{\alpha_{1}} \cdots \mathcal{P}_{\alpha_{k}}
$$

where $w=s_{\alpha_{1}} \cdots s_{\alpha_{k}}$ is any reduced decomposition of w.

The longest element

Let W be a finite Coxeter group with generating simple reflections $S=\left\{s_{\alpha}, \alpha \in \Delta\right\}$. The length of an element $w \in W$ is the minimal number of terms required to write w as a product of simple reflections. There is a unique $w_{0} \in W$ of maximal length.
For example, the longest element in S_{3} is

$$
(13)=(12)(23)(12)=(23)(12)(23)
$$

Some properties of $\mathcal{P}_{w_{0}}$

- $\mathcal{P}_{w_{0}}^{2}=\mathcal{P}_{w_{0}}$

Some properties of $\mathcal{P}_{w_{0}}$

- $\mathcal{P}_{w_{0}}^{2}=\mathcal{P}_{w_{0}}$

Say $\pi \in C_{0}^{T}(V)$ is dominant if $\pi(s) \in \bar{C}$ for all $s \leq T$.

Some properties of $\mathcal{P}_{w_{0}}$

- $\mathcal{P}_{w_{0}}^{2}=\mathcal{P}_{w_{0}}$

Say $\pi \in C_{0}^{T}(V)$ is dominant if $\pi(s) \in \bar{C}$ for all $s \leq T$.

- For any $\eta \in C_{0}^{T}(V), \mathcal{P}_{w_{0}} \eta$ is dominant.

Brownian motion (conditioned to stay) in a cone

Let C be a convex cone in V.

Brownian motion (conditioned to stay) in a cone

Let C be a convex cone in V.
Let $p_{t}^{0}(x, y)$ be the heat kernel on C with Dirichlet boundary conditions.

Brownian motion (conditioned to stay) in a cone

Let C be a convex cone in V.
Let $p_{t}^{0}(x, y)$ be the heat kernel on C with Dirichlet boundary conditions.
Biane (1993): There exists a unique (up to constant factors) positive p^{0}-harmonic function h on C.

Brownian motion (conditioned to stay) in a cone

Let C be a convex cone in V.
Let $p_{t}^{0}(x, y)$ be the heat kernel on C with Dirichlet boundary conditions.
Biane (1993): There exists a unique (up to constant factors) positive p^{0}-harmonic function h on C.
Brownian motion in the cone C is defined to be the corresponding Doob h-transform, with infinitessimal generator and transition density given respectively by

$$
\frac{1}{2} \Delta+\nabla(\log h) \cdot \nabla \quad q_{t}(x, y)=\frac{h(y)}{h(x)} p_{t}^{0}(x, y) .
$$

The three-dimensional Bessel Process

If $V=\mathbb{R}$ and $C=\mathbb{R}_{+}$then

$$
p_{t}^{0}(x, y)=p_{t}(x, y)-p_{t}(x,-y) \quad h(x)=x
$$

Brownian motion in \mathbb{R}_{+}is the three-dimensional Bessel process, with infinitessimal generator

$$
\frac{1}{2} \frac{d}{d x^{2}}+\frac{1}{x} \frac{d}{d x}
$$

Brownian motion in a Weyl chamber

Let W be a finite Coxeter group acting on V with fundamental chamber C. Then

$$
p_{t}^{0}(x, y)=\sum_{w \in W} \varepsilon(w) p_{t}(x, w y) \quad h(x)=\prod_{\alpha \in \Phi^{+}}(\alpha, x)
$$

Brownian motion in a Weyl chamber

Let W be a finite Coxeter group acting on V with fundamental chamber C. Then

$$
p_{t}^{0}(x, y)=\sum_{w \in W} \varepsilon(w) p_{t}(x, w y) \quad h(x)=\prod_{\alpha \in \Phi^{+}}(\alpha, x)
$$

If $W=S_{n}$ and $V=\mathbb{R}^{n}$, the Brownian motion in C is distributed as the eigenvalue process of a Brownian motion in the Lie algebra of $n \times n$ Hermitian matrices.

A generalisation of Pitman's theorem

Let W be a finite Coxeter group acting on V with fundamental chamber C.

Theorem. If η is a Brownian motion in V (with respect to some probability \mathbb{P} on $C_{0}^{T}(V)$), then $\mathcal{P}_{w_{0}} \eta$ is a Brownian motion in C.
Representation-theoretic proof in Weyl group case; proof for the general case uses duality properties of $\mathcal{P}_{w_{0}}$.

String parameters

cf. Littelmann (1998), Berenstein and Zelevinsky (2001)
Reduced decomposition $w_{0}=s_{\alpha_{1}} \ldots s_{\alpha_{q}}$
Set $\eta_{q}=\eta$ and, for $i \leq q$,

$$
\eta_{i-1}=\mathcal{P}_{\alpha_{i}} \ldots \mathcal{P}_{\alpha_{q}} \eta \quad x_{i}=-\inf _{T \geq t \geq 0} \alpha_{i}^{\vee}\left(\eta_{i}(t)\right)
$$

String parameters

cf. Littelmann (1998), Berenstein and Zelevinsky (2001)
Reduced decomposition $w_{0}=s_{\alpha_{1}} \ldots s_{\alpha_{q}}$
Set $\eta_{q}=\eta$ and, for $i \leq q$,

$$
\eta_{i-1}=\mathcal{P}_{\alpha_{i}} \ldots \mathcal{P}_{\alpha_{q}} \eta \quad x_{i}=-\inf _{T \geq t \geq 0} \alpha_{i}^{\vee}\left(\eta_{i}(t)\right)
$$

Then $\eta_{0}=\mathcal{P}_{w_{0}} \eta$ and

$$
\mathcal{P}_{w_{0}} \eta(T)=\eta(T)+\sum_{i=1}^{q} x_{i} \alpha_{i} .
$$

String parameters

cf. Littelmann (1998), Berenstein and Zelevinsky (2001)
Reduced decomposition $w_{0}=s_{\alpha_{1}} \ldots s_{\alpha_{q}}$
Set $\eta_{q}=\eta$ and, for $i \leq q$,

$$
\eta_{i-1}=\mathcal{P}_{\alpha_{i}} \ldots \mathcal{P}_{\alpha_{q}} \eta \quad x_{i}=-\inf _{T \geq t \geq 0} \alpha_{i}^{\vee}\left(\eta_{i}(t)\right)
$$

Then $\eta_{0}=\mathcal{P}_{w_{0}} \eta$ and

$$
\mathcal{P}_{w_{0}} \eta(T)=\eta(T)+\sum_{i=1}^{q} x_{i} \alpha_{i} .
$$

Let $\mathbf{i}=\left(\alpha_{1}, \ldots, \alpha_{q}\right)$ and $\varrho_{\mathbf{i}}(\eta)=\left(x_{1}, \ldots, x_{q}\right)$.

String parameters

- The mapping

$$
\mathcal{P}_{w_{0}} \times \varrho_{\mathbf{i}}: C_{0}^{T}(V) \rightarrow \bigcup_{\lambda \in \bar{C}} D^{\lambda} \times M_{\mathbf{i}}^{\lambda}
$$

is a bijection, where D^{λ} is the set of dominant paths π with $\pi(T)=\lambda$ and $M_{\mathbf{i}}^{\lambda}$ is a (generalised) 'string polytope'

String parameters

- The mapping

$$
\mathcal{P}_{w_{0}} \times \varrho_{\mathbf{i}}: C_{0}^{T}(V) \rightarrow \bigcup_{\lambda \in \bar{C}} D^{\lambda} \times M_{\mathbf{i}}^{\lambda}
$$

is a bijection, where D^{λ} is the set of dominant paths π with $\pi(T)=\lambda$ and $M_{\mathbf{i}}^{\lambda}$ is a (generalised) 'string polytope'

- In the type A case, for suitable $\mathbf{i}, M_{\mathbf{i}}^{\lambda}$ is essentially the set of Gelfand-Tsetlin patterns with bottom row λ and the restricton of $\mathcal{P}_{w_{0}} \times \varrho_{\mathbf{i}}$ to 'lattice paths' is equivalent to RSK:

$$
D^{\lambda} \simeq \text { standard tableaux with shape } \lambda
$$

$M_{\mathrm{i}}^{\lambda} \simeq$ semistandard tableaux with shape λ

Littelmann's path model

Suppose W is a Weyl group.
Let $P=\left\{\mu \in V: \alpha^{\vee}(\mu) \in \mathbb{Z}, \forall \alpha \in \Delta\right\}, P_{+}=P \cap \bar{C}$
Let π be dominant with $\pi(T)=\lambda \in P_{+}$and integral:

$$
\inf _{s \leq T} \alpha^{\vee}(\pi(s)) \in \mathbb{Z} \quad \forall \alpha \text { simple } .
$$

Raising/lowering operators e_{α}, f_{α} generate path module B_{π}
Then, for example,

$$
\operatorname{dim} \lambda=\left|B_{\pi}\right|, \quad M_{\mu}^{\lambda}=\left|\left\{\eta \in B_{\pi}: \eta(T)=\mu\right\}\right|
$$

Similar formulae for the Littlewood-Richardson coefficients.
From the definition, $\mathcal{P}_{\alpha}=e_{\alpha}^{\text {MAX }}$.

Littelmann's raising and lowering operators

Connection with the Pitman transform

Connection with the Pitman transform

Connection with the Pitman transform

String polytopes

Theorem. Setting $L_{\pi}:=\mathcal{P}_{w_{0}}^{-1} \pi$ we have

$$
B_{\pi}=\left\{\eta \in L_{\pi}: \varrho_{\mathbf{i}}(\eta) \in \mathbb{N}^{q}\right\}
$$

String polytopes

Theorem. Setting $L_{\pi}:=\mathcal{P}_{w_{0}}^{-1} \pi$ we have

$$
B_{\pi}=\left\{\eta \in L_{\pi}: \varrho_{\mathbf{i}}(\eta) \in \mathbb{N}^{q}\right\}
$$

Littelmann (1998) showed that

$$
\varrho_{\mathbf{i}}\left(B_{\pi}\right)=C_{\mathbf{i}} \cap \mathbb{N}^{q} \cap K_{\pi}
$$

where
$K_{\pi}=\left\{x \in \mathbb{R}_{+}^{q}: 0 \leq x_{i} \leq \alpha_{i}^{\vee}\left(\pi(T)-\sum_{j=1}^{i-1} x_{j} \alpha_{j}\right), i=1, \ldots, q\right\}$,
and C_{i} is a convex polyhedral cone in \mathbb{R}^{q}. Berenstein and Zelevinsky (2001) give an explicit description of $C_{\mathbf{i}}$.

String polytopes

- We show that in the general case, if $\pi(T)=\lambda$,

$$
M_{\mathbf{i}}^{\lambda}:=\varrho_{\mathbf{i}}\left(L_{\pi}\right)=C_{\mathbf{i}} \cap K_{\pi}
$$

with K_{π} as before and C_{i} a convex polyhedral cone in \mathbb{R}^{q}. In particular, $\varrho_{\mathbf{i}}\left(L_{\pi}\right)$ depends only on the endpoint λ.

String polytopes

- We show that in the general case, if $\pi(T)=\lambda$,

$$
M_{\mathbf{i}}^{\lambda}:=\varrho_{\mathbf{i}}\left(L_{\pi}\right)=C_{\mathbf{i}} \cap K_{\pi}
$$

with K_{π} as before and C_{i} a convex polyhedral cone in \mathbb{R}^{q}. In particular, $\varrho_{\mathbf{i}}\left(L_{\pi}\right)$ depends only on the endpoint λ.

- Moreover, as in the Weyl goup case, the string parameters corresponding to one decomposition determine those of another via a piecewise linear continuous map (which does not depend on the path).

Duistermaat-Heckman measure

Theorem. Let η be a standard Brownian motion in V.

Duistermaat-Heckman measure

Theorem. Let η be a standard Brownian motion in V.

- The conditional law of $\varrho_{\mathbf{i}}(\eta)$, given $\left(\mathcal{P}_{w_{0}} \eta(s), s \leq T\right)$ and $\mathcal{P}_{w_{0}} \eta(T)=\lambda$, is almost surely uniform on M_{i}^{λ}.

Duistermaat-Heckman measure

Theorem. Let η be a standard Brownian motion in V.

- The conditional law of $\varrho_{\mathbf{i}}(\eta)$, given ($\mathcal{P}_{w_{0}} \eta(s), s \leq T$) and $\mathcal{P}_{w_{0}} \eta(T)=\lambda$, is almost surely uniform on $M_{\mathbf{i}}^{\lambda}$.
- The conditional law of $\eta(T)$, given ($\mathcal{P}_{w_{0}} \eta(s), s \leq T$) and $\mathcal{P}_{w_{0}} \eta(T)=\lambda$, depends only on λ; denoting this law by $\mu_{D H}^{\lambda}$,

$$
\int_{V} e^{(z, v)} \mu_{D H}^{\lambda}(d v)=k \frac{\sum_{w \in W}(-1)^{w} e^{(w z, \lambda)}}{h(z) h(\lambda)} \quad z \in V^{*}
$$

Duistermaat-Heckman measure

Theorem. Let η be a standard Brownian motion in V.

- The conditional law of $\varrho_{\mathbf{i}}(\eta)$, given $\left(\mathcal{P}_{w_{0}} \eta(s), s \leq T\right)$ and $\mathcal{P}_{w_{0}} \eta(T)=\lambda$, is almost surely uniform on $M_{\mathbf{i}}^{\lambda}$.
- The conditional law of $\eta(T)$, given ($\left.\mathcal{P}_{w_{0}} \eta(s), s \leq T\right)$ and $\mathcal{P}_{w_{0}} \eta(T)=\lambda$, depends only on λ; denoting this law by $\mu_{D H}^{\lambda}$,

$$
\int_{V} e^{(z, v)} \mu_{D H}^{\lambda}(d v)=k \frac{\sum_{w \in W}(-1)^{w} e^{(w z, \lambda)}}{h(z) h(\lambda)} \quad z \in V^{*}
$$

- $\mu_{D H}^{\lambda}$ is supported on the convex hull of $W \lambda$ and has a continuous, piecewise polynomial density.

DH measure for A_{2}

From:
Valery Alexeev, Michel Brion. Toric degenerations of spherical varieties. (math.AG/0403379), and
S. Morier-Genoud. Geometric lifting of the canonical basis and semitoric degenerations of Richardson varieties. (math.RT/0504538).

DH measure for I(5) (with $\lambda \in \partial C$)

Further results

- Generalisation of Greene's formula

Further results

- Generalisation of Greene's formula
- Duality properties, connections with queueing theory

Further results

- Generalisation of Greene's formula
- Duality properties, connections with queueing theory
- Crystal / plactic monoid structure

Further results

- Generalisation of Greene's formula
- Duality properties, connections with queueing theory
- Crystal / plactic monoid structure
- Geometric lifting / tropicalisation

References

A. Berenstein and A. Zelevinsky. Tensor product multiplicities, canonical bases and totally positive varieties. Invent. Math. 143 (2001), no. 1, 77-128.

Ph. Biane, Ph. Bougerol, N. O'Connell. Littelmann paths and Brownian paths. Duke Math. J. 130 (2005) 127-167.
Ph. Biane, Ph. Bougerol, N. O'Connell. Continuous crystals and Duistermaat-Heckman measure for Coxeter groups. In preparation.
G. J. Heckman. Projections of orbits and asymptotic behavior of multiplicities for compact connected Lie groups. Invent. Math. 67 (1982), no. 2, 333-356.
P. Littelmann. Cones, crystals, and patterns. Transform. Groups 3 (1998), no. 2, 145-179.
J.W. Pitman. One-dimensional Brownian motion and the three-dimensional Bessel process. Adv. Appl. Probab. 7 (1975) 511-526.

