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Pitman’s Theorem (1975)

If (B(t), t ≥ 0) is a one-dimensional Brownian motion, then

B(t)− 2 inf
s≤t

B(s), t ≥ 0

is a three-dimensional Bessel process.
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The Pitman transform
For continuous π : [0,T ]→ R with π(0) = 0, define Pπ by

Pπ(t) = π(t)− 2 inf
s≤t

π(s).
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Generalised Pitman Transforms

Let V be a finite-dimensional Euclidean space.

CT
0 (V ) = { continuous paths η : [0,T ]→ V with η(0) = 0 }.

For α ∈ V , set α∨ = 2α/(α, α).

For η ∈ CT
0 (V ) and α ∈ V , define

Pαη(t) = η(t)− inf
s≤t

α∨(η(s))α, 0 ≤ t ≤ T .
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Hyperplane reflections and the braid relations

For α ∈ V , let sα denote the reflection through α⊥:

sαλ = λ− α∨(λ)α.

Let β ∈ V with (α, β) = − cos(π/n). Then

sαsβsα · · · = sβsαsβ · · · n terms

Theorem:

PαPβPα · · · = PβPαPβ · · · n terms
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Finite Coxeter groups

W = finite group of isometries on V
S = {sα, α ∈ ∆} generating set of ‘simple’ reflections

If π/nαβ is the angle between hyperplanes α⊥ and β⊥ then

s2
α = 1 (sαsβ)nαβ = 1 α, β ∈ ∆

are the defining relations for W .

The (closure of)

C = {λ ∈ V : (α, λ) > 0, ∀α ∈ ∆}

is a fundamental domain for the action of W on V .
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Example

α = (e1 − e2)/
√

2 W = 〈 sα, sβ 〉 ' S3 = 〈 (12), (23) 〉
β = (e2 − e3)/

√
2

α

β

C = {x1 > x2 > x3}
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Generalised Pitman Transforms II

For each w ∈W , we can define

Pw = Pα1 · · · Pαk

where w = sα1 · · · sαk is any reduced decomposition of w .
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The longest element

Let W be a finite Coxeter group with generating simple
reflections S = {sα, α ∈ ∆}. The length of an element w ∈W is
the minimal number of terms required to write w as a product of
simple reflections. There is a unique w0 ∈W of maximal length.

For example, the longest element in S3 is

(13) = (12)(23)(12) = (23)(12)(23).
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Some properties of Pw0

I P2
w0

= Pw0

Say π ∈ CT
0 (V ) is dominant if π(s) ∈ C for all s ≤ T .

I For any η ∈ CT
0 (V ), Pw0η is dominant.

Neil O’Connell Path-transforms in probability and rep. theory



Some properties of Pw0

I P2
w0

= Pw0

Say π ∈ CT
0 (V ) is dominant if π(s) ∈ C for all s ≤ T .

I For any η ∈ CT
0 (V ), Pw0η is dominant.

Neil O’Connell Path-transforms in probability and rep. theory



Some properties of Pw0

I P2
w0

= Pw0

Say π ∈ CT
0 (V ) is dominant if π(s) ∈ C for all s ≤ T .

I For any η ∈ CT
0 (V ), Pw0η is dominant.

Neil O’Connell Path-transforms in probability and rep. theory



-4 -3 -2 -1 0 1 2 3 4
-4

-3

-2

-1

0

1

2

3

4

-4 -3 -2 -1 0 1 2 3 4
-4

-3

-2

-1

0

1

2

3

4

-4 -3 -2 -1 0 1 2 3 4
-4

-3

-2

-1

0

1

2

3

4

-4 -3 -2 -1 0 1 2 3 4
-4

-3

-2

-1

0

1

2

3

4

-4 -3 -2 -1 0 1 2 3 4
-4

-3

-2

-1

0

1

2

3

4

-4 -3 -2 -1 0 1 2 3 4
-4

-3

-2

-1

0

1

2

3

4

p Pap

Pbp PbPap

PaPbp PaPbPap

= PbPaPbp

Neil O’Connell Path-transforms in probability and rep. theory



Brownian motion (conditioned to stay) in a cone

Let C be a convex cone in V .

Let p0
t (x , y) be the heat kernel on C with Dirichlet boundary

conditions.

Biane (1993): There exists a unique (up to constant factors)
positive p0-harmonic function h on C.

Brownian motion in the cone C is defined to be the
corresponding Doob h-transform, with infinitessimal generator
and transition density given respectively by

1
2

∆ +∇(log h) · ∇ qt (x , y) =
h(y)

h(x)
p0

t (x , y).
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The three-dimensional Bessel Process

If V = R and C = R+ then

p0
t (x , y) = pt (x , y)− pt (x ,−y) h(x) = x .

Brownian motion in R+ is the three-dimensional Bessel
process, with infinitessimal generator

1
2

d
dx2 +

1
x

d
dx
.
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Brownian motion in a Weyl chamber

Let W be a finite Coxeter group acting on V with fundamental
chamber C. Then

p0
t (x , y) =

∑
w∈W

ε(w)pt (x ,wy) h(x) =
∏
α∈Φ+

(α, x).

If W = Sn and V = Rn, the Brownian motion in C is distributed
as the eigenvalue process of a Brownian motion in the Lie
algebra of n × n Hermitian matrices.

Neil O’Connell Path-transforms in probability and rep. theory



Brownian motion in a Weyl chamber

Let W be a finite Coxeter group acting on V with fundamental
chamber C. Then

p0
t (x , y) =

∑
w∈W

ε(w)pt (x ,wy) h(x) =
∏
α∈Φ+

(α, x).

If W = Sn and V = Rn, the Brownian motion in C is distributed
as the eigenvalue process of a Brownian motion in the Lie
algebra of n × n Hermitian matrices.

Neil O’Connell Path-transforms in probability and rep. theory



A generalisation of Pitman’s theorem

Let W be a finite Coxeter group acting on V with fundamental
chamber C.

Theorem. If η is a Brownian motion in V (with respect to some
probability P on CT

0 (V )), then Pw0η is a Brownian motion in C.

Representation-theoretic proof in Weyl group case; proof for the
general case uses duality properties of Pw0 .
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String parameters

cf. Littelmann (1998), Berenstein and Zelevinsky (2001)

Reduced decomposition w0 = sα1 . . . sαq

Set ηq = η and, for i ≤ q,

ηi−1 = Pαi . . .Pαqη xi = − inf
T≥t≥0

α∨i (ηi(t)).

Then η0 = Pw0η and

Pw0η(T ) = η(T ) +

q∑
i=1

xiαi .

Let i = (α1, . . . , αq) and %i(η) = (x1, . . . , xq).
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String parameters

I The mapping

Pw0 × %i : CT
0 (V )→

⋃
λ∈C

Dλ ×Mλ
i

is a bijection, where Dλ is the set of dominant paths π with
π(T ) = λ and Mλ

i is a (generalised) ‘string polytope’

I In the type A case, for suitable i, Mλ
i is essentially the set

of Gelfand-Tsetlin patterns with bottom row λ and the
restricton of Pw0 × %i to ‘lattice paths’ is equivalent to RSK:

Dλ ' standard tableaux with shape λ

Mλ
i ' semistandard tableaux with shape λ
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Littelmann’s path model

Suppose W is a Weyl group.

Let P = {µ ∈ V : α∨(µ) ∈ Z, ∀α ∈ ∆}, P+ = P ∩ C

Let π be dominant with π(T ) = λ ∈ P+ and integral:

inf
s≤T

α∨(π(s)) ∈ Z ∀α simple.

Raising/lowering operators eα, fα generate path module Bπ

Then, for example,

dim λ = |Bπ|, Mλ
µ = |{η ∈ Bπ : η(T ) = µ}|.

Similar formulae for the Littlewood-Richardson coefficients.

From the definition, Pα = eMAX
α .
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Littelmann’s raising and lowering operators
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Littelmann’s raising and lowering operators
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Littelmann’s raising and lowering operators
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Connection with the Pitman transform
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Connection with the Pitman transform

-

6

π

eπs s s s s s s s s s
�
�@
@
@
@�

�
�
�@
@�

�
�
�@
@

�
�@
@
@
@
@
@�
�@
@�

�
�
�@
@

Neil O’Connell Path-transforms in probability and rep. theory



Connection with the Pitman transform
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String polytopes

Theorem. Setting Lπ := P−1
w0
π we have

Bπ = {η ∈ Lπ : %i(η) ∈ Nq}.

Littelmann (1998) showed that

%i(Bπ) = Ci ∩ Nq ∩ Kπ

where

Kπ =

x ∈ Rq
+ : 0 ≤ xi ≤ α∨i

π(T )−
i−1∑
j=1

xjαj

 , i = 1, . . . ,q

 ,

and Ci is a convex polyhedral cone in Rq. Berenstein and
Zelevinsky (2001) give an explicit description of Ci.
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String polytopes

I We show that in the general case, if π(T ) = λ,

Mλ
i := %i(Lπ) = Ci ∩ Kπ

with Kπ as before and Ci a convex polyhedral cone in Rq.
In particular, %i(Lπ) depends only on the endpoint λ.

I Moreover, as in the Weyl goup case, the string parameters
corresponding to one decomposition determine those of
another via a piecewise linear continuous map (which does
not depend on the path).
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Duistermaat-Heckman measure

Theorem. Let η be a standard Brownian motion in V .

I The conditional law of %i(η), given (Pw0η(s), s ≤ T ) and
Pw0η(T ) = λ, is almost surely uniform on Mλ

i .
I The conditional law of η(T ), given (Pw0η(s), s ≤ T ) and
Pw0η(T ) = λ, depends only on λ; denoting this law by µλDH ,∫

V
e(z,v)µλDH(dv) = k

∑
w∈W (−1)we(wz,λ)

h(z)h(λ)
z ∈ V ∗.

I µλDH is supported on the convex hull of Wλ and has a
continuous, piecewise polynomial density.
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DH measure for A2

16 VALERY ALEXEEV AND MICHEL BRION

The collections ∪Πi were called meanders in [BCFKvS00] in which the authors
describe the toric degeneration constructed by Gonciulea and Lakshmibai. Note
that in the case when the weight λ is not regular, i.e. when some λj = 0 and the
corresponding variety G/Pλ is a partial flag variety, the graph Γ can be simplified
by cutting out square corners along the diagonal in which the values of gi,j’s are
uniquely determined.

The extremal weight vertices of GT(λ) can be described with a little more work.
Since we do not need this description, we leave the proof to the reader.

Lemma 5.4. For every permutation w ∈ W = Sn+1, w = (k1k2 . . . kn+1) the
corresponding vertex is obtained by filling k1 − 1 variables gi,j starting from the top
in a minimal way with λ1, then filling k2 − 1 variables in a minimal way with λ2

etc.

Example 5.5. For the group G = SL3 of type A2 and a regular weight λ, there are
6 = 3! extremal weight vertices and one additional vertex corresponding to setting
g1,1 = g1,2 = g2,1 = λ2. The polytope GT(λ) has its projection to ΛR shown on
Fig. 1.

λ

Figure 1. Projection of GT(λ)

§ 5.2. G of type An and other w0. For many of the explicit computations
below, we used the freely available program porta for performing manipulations
with polytopes.

The fans Σw0
need not be trivial in general.

Example 5.6. Let G be of type A3 and let the reduced decomposition be w0 =
s1s3s2s3s1s2. The fan Σw0

consists of two maximal dimensional cones obtained by

splitting Λ+
R into two halves by the hyperplane 〈λ, α∨

1 〉 = 〈λ, α∨
3 〉. For a regular

weight λ, the polytope Qw0
(λ) has 38 or 44 vertices depending on which cone λ lies

in.

Example 5.7. The polytopes Qw0
(ρ) are integral for G = SLn, n ≤ 5. In type A3

they have 12 or 13 facets and 38, 40 or 42 vertices. In type A4, the polytopes have
from 20 to 27 facets and from 334 to 425 vertices.

Conjecture 5.8. For G of type An and any reduced decomposition w0, the polytope
Qw0

(λ) is integral if and only if 〈λ, α∨
i 〉 ∈ Z for all i.

(1,2,1)(0,2,1)

(0,1,0)
(1,1,0)

(1,0,0)

(2,1,0)

(0,1,1)

(0,0,0)
A

CD

E
F

B

G

From:

Valery Alexeev, Michel Brion. Toric degenerations of spherical varieties. (math.AG/0403379), and

S. Morier-Genoud. Geometric lifting of the canonical basis and semitoric degenerations of Richardson varieties.

(math.RT/0504538).
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DH measure for I(5) (with λ ∈ ∂C)
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Further results

I Generalisation of Greene’s formula

I Duality properties, connections with queueing theory
I Crystal / plactic monoid structure
I Geometric lifting / tropicalisation
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