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Random matrices: a brief history

1930’s — Multivariate statistics (Wishart, . . . )

1950’s — Nuclear physics (Wigner, . . . )

1960’s — Local statistics of eigenvalues, symmetry (Dyson, . . . )

1980’s — Enumerative geometry (Harer-Zagier, . . . )

2000’s — Combinatorial representation theory and related models in
statistical physics (Baik-Deift-Johansson, . . . )
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Gaussian random matrices

Probability measure on the set of n× n Hermitian matrices:

Pn(X)dX =
1

2n/2

1
πn2/2

e−
1
2 tr X2

dX

=
∏

1≤i≤n

1√
2π

e−x2
ii/2dxii

∏
1≤i<j≤n

1
π

e−|xij|2d<xijd=xij

Joint law (density) of the eigenvalues:

pn(λ1, . . . , λn) =
1

1!2! · · · n!

∏
i<j

(λi − λj)
2

n∏
i=1

e−λ
2
i /2

√
2π

(λi ∈ R)
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Moments

E tr X2k =

∫
Rn

(
n∑

i=1

λ2k
i

)
pn(λ1, . . . , λn)dλ1 · · · dλn

E tr X2 = n2

E tr X4 = 2n3 + n

E tr X6 = 5n4 + 10n2

E tr X8 = 14n5 + 70n3 + 21n

2 = # pairwise gluings of edges of a square to obtain a sphere
1 = # pairwise gluings of edges of a square to obtain a torus
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Moments

E tr X2k =

∫
Rn

(
n∑

i=1

λ2k
i

)
pn(λ1, . . . , λn)dλ1 · · · dλn

E tr X2 = n2

E tr X4 = 2n3 + n

E tr X6 = 5n4 + 10n2

E tr X8 = 14n5 + 70n3 + 21n

14 = # pairwise gluings of edges of octagon to obtain a sphere
70 = # pairwise gluings of edges of octagon to obtain a torus
21 = # pairwise gluings . . . to obtain an orientable genus-2 surface

Reference: Harer-Zagier (1986)
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Wigner’s semi-circle law

The leading coefficients 1, 2, 5, 14, . . . are the Catalan numbers:

ε0(k) =
1

k + 1

(
2k
k

)
=

2
π

∫ 2

−2
x2k
√

4− x2dx

These are the even moments of Wigner’s (1950) semicircle law:
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Mixed moments, topological recursion

More generally, mixed moments of the form

E (tr Xk1 . . . tr Xkr )

can be computed using loop equations / topological recursion.
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Recurrence relations

Let Qk(n) = E tr X2k. Then (Harer and Zagier, 1986)

(k + 2)Qk+1(n) = 2n(2k + 1)Qk(n) + k(2k + 1)(2k − 1)Qk−1(n),

and (we find)

nQk(n + 1) = 2(k + 1)Qk(n) + nQk(n− 1).

8 / 26



Complex Wishart random matrices

Probability measure on the set of n× n positive definite Hermitian matrices:

Pn(X)dX = cn det Xne−tr XdX.

Joint law (density) of the eigenvalues:

pn(λ1, . . . , λn) = c′n
∏
i<j

(λi − λj)
2

n∏
i=1

λn
i e−λi (λi ∈ R+)
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Moments

E tr Xk =

∫
Rn

+

(
n∑

i=1

λk
i

)
pn(λ1, . . . , λn)dλ1 · · · dλn

E tr X0 = n

E tr X1 = 2n2

E tr A2 = 6n3

E tr A3 = 22n4 + 2n2

These are genus expansions, with combinatorial interpretations as before.
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Recurrence relations

Let Qk(n) = E tr Xk. Then (Hagerup and Thorbørnsen, 2003)

(k + 2)Qk+1(n) = 3n(2k + 1)Qk(n) + (k − 1)(k2 − n2)Qk−1(n),

and (we find) similar recursions in n.
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Marchenko-Pastur distribution

The leading coefficients 1, 2, 6, 22, . . . are the Schröder numbers

Sk =

∫
xkp(x)dx,

where
p(x) =

1
2πx

√
(x− a−)(a+ − x), a± = (1±

√
2)2

is the Marchenko-Pastur distribution.
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Negative moments

Cunden, Mezzadri, Simm, Vivo (2015) showed that negative moments are
rational functions of n:

E tr X−k =
∑
g≥0

τk,g n1−k−2g

and conjectured that the coefficients τk,g are positive integers.

For example,

E tr X−3 =
6n2

(n2 − 4)(n2 − 1)
=

6
n2 +

30
n4 +

126
n6 + · · ·
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A reflection symmetry

Theorem (Cunden, Mezzadri, O’C, Simm, 2018)

E tr X−k−1 =

k∏
j=−k

1
n + j

E tr Xk.

This implies the above conjecture.

Proof is straightforward using (an extension of) the Haagerup-Thorbørnsen
recursion (but discovery was not straightforward!)
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Average spectral zeta function

Observe that

E tr X−s = E
n∑

i=1

λ−s
i ,

where λ1, . . . , λn are the eigenvalues of X.

Setting

ξn(s) =
1

Γ(1 + n− s)
E tr X−s

the above reflection symmetry gives the functional equation

ξn(s) = ξn(1− s).

Natural question: where are the zeros?
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Moments as polynomials in k

n (2n− 1)!(n− 1)!E tr Xk/(n + k)!

1 1
2 6 + k + k2

3 120 + 28k + 29k2 + 2k3 + k4

4 5040 + 1356k + 1432k2 + 153k3 + 79k4 + 3k5 + k6
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As orthogonal polynomials . . .

Recall
ξn(s) =

1
Γ(1 + n− s)

E tr X−s, ξn(s) = ξn(1− s).

Theorem
Let s = 1/2 + ix. Then

ξn(s) =
1

Γ(n)Γ(2n)
Sn−1

(
x2;

3
2
,

1
2
, n +

1
2

)
,

where Sn−1 is a continuous dual Hahn polynomial of degree n− 1.

Corollary
The zeros of ξn(s) lie on the critical line <s = 1/2.
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Moments of random matrices and hypergeometric
orthogonal polynomials

More generally, we find that moments E tr Xk, for classical ensembles of random
matrices, are given in terms of hypergeometric (or ‘neo-classical’) orthogonal
polynomials in the variable k.

Moreover, for the Gaussian (GUE) and Wishart (LUE) ensembles, they are also
hypergeometric orthogonal polynomials in the dimension n.

The Harer-Zagier and Hagerup-Thorbørnsen recursions are in fact the three term
recurrence relations for the Meixner and Hahn polynomials, or equivalently the
discrete Sturm-Liouville equations for their duals; recursions in n also.

Ensemble Classical OP Moments
GUE Hermite Meixner-Pollaczek
LUE Laguerre Continuous dual Hahn
JUE Jacobi Wilson

19 / 26



Mellin transforms of orthogonal polynomials

Bump and Ng (1986) and Bump, Choi, Kurlberg and Vaaler (2000): Mellin
transforms of Hermite and Laguerre functions form families of orthogonal
polynomials and have zeros on the critical line <(s) = 1/2. Coffey (2007),
Coffey and Lettington (2015) consider other families.

Moments of Gaussian/Wishart random matrices can be represented as Mellin
transforms of Wronskians of consecutive Hermite/Laguerre functions:

E tr X−s
n = c(s)

∫
x−s Wr (φn−1, φn)(x) dx.

cf. exceptional orthogonal polynomials, etc.
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Zeros of Bessel functions

Polya (1926) considered an approximation of Riemann’s zeta function for
which the Riemann hypothesis is implied by the statement that the zeros of
z 7→ Kz(2π) are purely imaginary.

This fact (and spectral interpretation of the zeros) can be proved using
Sturm-Lioville theory (see, for e.g., Biane 2009): consider(

d2

dx2 − e2x
)

Kµ(ex) = µ2Kµ(ex)

with Dirichlet boundary conditions on [log(2π),∞).
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Mellin transform of Marchenko-Pastur distribution

We find that the Mellin transform of the Marchenko-Pastur distribution

M(s) =
1

2π

∫
x−s−1

√
(x− a−)(a+ − x)dx, a± = (1±

√
2)2

has a similar interpretation, satisfies the functional equation
M(s) = M(1− s), and its zeros lie on the critical line <(s) = 1/2.
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Orthogonal and symplectic ensembles

The above examples are over C, but can also be considered over R and H.

Writing QK
k (n) = E tr X2k, we have for example in the Gaussian case:

QC
2 (n) = 2n3 + n

QR
2 (n) = 2n3 + 5n2 + 5n

QH
2 (n) = 8n3 − 10n2 + 5n.

The real case is a genus expansion which includes non-orientable surfaces.

Reference: Goulden-Jackson (1996)

23 / 26



Orthogonal and symplectic ensembles

We find that
pn(k) = cn2k+1QH

k (n)/(2k − 1)!!

is a polynomial in k of degree 2(n− 1):

p1(k) = 1

p2(k) = k2 + 5k + 3

p3(k) = k4 + 10k3 + 38k2 + 41k +
45
2

p4(k) = k6 + 15k5 + 109k4 + 393k3 + 637k2 + 735k + 315.
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Orthogonal and symplectic ensembles

For the real case we find that

cnQR
k (2n + 1)/(2k − 1)!! = pn(k) + 2kqn(k)

where qn(k) is a Meixner polynomial of degree n.

Remark: this is a new duality formula, compare

QR
k (2n + 1) = 2k+1QH

k (n) + 2kqn(k)/cn

with the known formula (Mulase-Waldron 2003)

QH
k (n) = (−1)k+1QR

k (−2n).
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Polya’s ‘false’ zeta function

ξ(s) = s(s− 1)π−s/2
Γ(s/2)ζ(s), ξ(s) = ξ(1− s)

ξ(1/2 + iz) = 2
∫ ∞

0
φ(u) cos(zu)du

φ(u) = 2πe5u/2
∞∑

n=1

(2πe2un2 − 3)n2e−πn2e2u

∼ 4π2
(e9u/2

+ e−9u/2
)e−π(e2u+e−2u) u→ ±∞.

Polya (1926) defines

ξ
∗
(z) = 2

∫ ∞
0

4π2
(e9u/2

+ e−9u/2
)e−π(e2u+e−2u)

cos(zu)du

= 2π2
[

Kiz/2−9/4(2π) + Kiz/2+9/4(2π)
]
.

Kac (1974): if Kiz(2π) has real zeros, then so does ξ∗(z), by the Lee-Yang theorem.
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