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The longest increasing subsequence problem

For a permutation σ ∈ Sn, write

Ln(σ) = length of longest increasing subsequence in σ

E.g. if σ = 154263 then L6(σ) = 3.

Based on Monte-Carlo simulations, Ulam (1961) conjectured that

ELn =
1
n!

∑
σ∈Sn

Ln(σ) ∼ c
√

n, n→∞.

A classical result from combinatorial geometry (Erdős-Szekeres 1935)
implies that ELn ≥

√
n− 1/2.
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The longest increasing subsequence problem

Hammersley (1972): The limit c exists, and π/2 ≤ c ≤ e.

Logan and Shepp (1977): c ≥ 2

Vershik and Kerov (1977): c = 2

Baik, Deift and Johansson (1999): for each x ∈ R,

1
n!
|{σ ∈ Sn : n−1/6(Ln(σ)− 2

√
n) ≤ x}| → F2(x),

where F2 is the Tracy-Widom (GUE) distribution from random matrix theory
(Tracy and Widom 1994 — limiting distribution of largest eigenvalue of
high-dimensional random Hermitian matrix)

How is this possible?
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The Robinson-Schensted correspondence

From the representation theory of Sn,

n! =
∑
λ`n

d2
λ

where dλ = number of standard tableaux with shape λ.

A standard tableau with shape (4, 3, 1) ` 8:

1 3 5 6
2 4 8
7

In other words, Sn has the same cardinality as the set of pairs of standard
tableaux of size n with the same shape.
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The Robinson-Schensted correspondence

Robinson (38): A bijection between Sn and such pairs

σ ←→ (P,Q)

Schensted (61):

Ln(σ) = length of longest row of P and Q

This yields
|{σ ∈ Sn : Ln(σ) ≤ k}| =

∑
λ`n, λ1≤k

d2
λ.
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The RSK correspondence

Knuth (70): Extends to a bijection between matrices with nonnegative integer
entries and pairs of semi-standard tableaux of same shape.

A semistandard tableau of shape λ ` n is a diagram of that shape, filled in
with positive integers which are weakly increasing along rows and strictly
increasing along columns.

A semistandard tableau of shape (5, 3, 1):

1 2 2 5 7
3 3 8
4
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Cauchy-Littlewood identity

This gives a combinatorial proof of the Cauchy-Littlewood identity∏
ij

(1− xiyj)
−1 =

∑
λ

sλ(x)sλ(y),

where sλ are Schur polynomials, defined by

sλ(x) =
∑

sh P=λ

xP,

where x = (x1, x2, . . .) and

xP = x ]1′s in P
1 x ]2′s in P

2 . . . .
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Cauchy-Littlewood identity

Let (aij) 7→ (P,Q) under RSK.

Then Cj =
∑

i aij = ] j’s in P and Ri =
∑

j aij = ] i’s in Q.

For x = (x1, x2, . . .) and y = (y1, y2, . . .) we have∏
ij

(yixj)
aij =

∏
j

xCj
j

∏
i

yRi
i = xPyQ.

Summing over (aij) on the left and (P,Q) with sh P = sh Q on the right gives∏
ij

(1− xiyj)
−1 =

∑
λ

sλ(x)sλ(y).
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Tableaux and Gelfand-Tsetlin patterns

Semistandard tableaux←→ discrete Gelfand-Tsetlin patterns

1 1 1 2 2 3
2 2 3 3 3
3

•
• •

• • •

0 1 2 3 4 5 6
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The RSK correspondence

If (aij) ∈ Nm×n, then length of longest row in corresponding tableaux is

M = maxπ
∑

(i,j)∈π aij

(1, 1)

(m, n)
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Combinatorial interpretation

Consider n queues in series:

, , ,| / ,| / / ,| ,|

Data:
aij = time required to serve ith customer at jth queue

If we start with all customers in first queue, then M is the time taken for all
customers to leave the system (Muth 79).
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Combinatorial interpretation

From the RSK correspondence:

If aij are independent random variables with P(aij ≥ k) = (piqj)
k then

P(M ≤ k) =
∏

ij

(1− piqj)
∑

λ: λ1≤k

sλ(p)sλ(q).

cf. Weber (79): The interchangeability of ·/M/1 queues in series.

Johansson (99): As n,m→∞, M ∼ Tracy-Widom distribution
(and other related asymptotic results)
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Surface growth and KPZ universality

The queueing system can be thought of as a model for surface growth . . .

Customer

1

2

3

4

5

Queue

1 2 3 4
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Surface growth and KPZ universality

. . . and belongs to the same universality class as:

Random Tilings Research Group

1. Introduction: 1D surface growth

• Paper combustion, bacteria colony, crystal

growth, liquid crystal turbulence

• Non-equilibrium statistical mechanics

• Stochastic interacting particle systems

• Integrable systems

2
Random tiling Burning paper Bacteria colonies

KPZ = Kardar-Parisi-Zhang (1986)
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Geometric RSK correspondence

The RSK mapping can be defined by expressions in the (max,+)-semiring.

Replacing these expressions by their (+,×) counterparts, A.N. Kirillov (00)
introduced a geometric lifting of RSK correspondence.

It is a bi-rational map

T : (R>0)n×n → (R>0)n×n

X = (xij) 7→ (tij) = T = T(X).

For n = 2,

x21
x11 x22

x12

7→
x11x21

x12x21/(x12 + x21) x11x22(x12 + x21)
x11x12
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Geometric RSK correspondence

The analogue of the ‘longest increasing subsequence’ is the matrix element:

tnn =
∑

φ∈Π(n,n)

∏
(i,j)∈φ

xij

(1, 1)

(n, n)

Neil O’Connell 16 / 35



Geometric RSK correspondence

tnm =
∑

φ∈Π(n,m)

∏
(i,j)∈φ

xij

(1, 1)

(n,m)
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Geometric RSK correspondence

tn−k+1,m−k+1 . . . tnm =
∑

φ∈Π
(k)
(n,m)

∏
(i,j)∈φ

xij

(1, 1)

(n,m)

T(X)′ = T(X′)
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Whittaker functions

Whittaker functions were first introduced by Jacquet (67). They play an
important role in the theory of automorphic forms and also arise as
eigenfunctions of the open quantum Toda chain (Kostant 77)

In the context of GL(n,R), they can be considered as functions Ψλ(x) on
(R>0)n, indexed by a (spectral) parameter λ ∈ Cn

The following ‘Gauss-Givental’ representation for Ψλ is due to Givental
(97), Joe-Kim (03), Gerasimov-Kharchev-Lebedev-Oblezin (06)
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Whittaker functions

A triangle P with shape x ∈ (R>0)n is an array of positive real numbers:

znn

z22

z11

z21

zn1

P =

with bottom row zn· = x.

Denote by ∆(x) the set of triangles with shape x.
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Whittaker functions

Let

znn

z22

z11

z21

zn1

P =

Define

Pλ = Rλ1
1

(
R2

R1

)λ2

· · ·
(

Rn

Rn−1

)λn

, λ ∈ Cn, Rk =

k∏
i=1

zki

F(P) =
∑
a→b

za

zb z33

z22

z11

z21

z31z32
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Whittaker functions

For λ ∈ Cn and x ∈ (R>0)n, define

Ψλ(x) =

∫
∆(x)

P−λe−F(P)dP,

where dP =
∏

1≤i≤k<n dzki/zki.

For n = 2,
Ψ(ν/2,−ν/2)(x) = 2Kν

(
2
√

x2/x1

)
.

These are called GL(n)-Whittaker functions. As we shall see, they are the
analogue of the Schur polynomials in the geometric setting.
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Geometric RSK correspondence

Recall

X = (xij) 7→ (tij) = T =

t31
t21 t32

t11 t22 t33
t12 t23

t13

= pair of triangles of same shape (tnn, . . . , t11).

tnn =
∑

φ∈Π(n,n)

∏
(i,j)∈φ xij

(1, 1)

(n, n)
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Whittaker measures

Let a, b ∈ Rn with ai + bj > 0 and define

P(dX) =
∏

ij

Γ(ai + bj)
−1x−ai−bj−1

ij e−1/xijdxij.

Theorem (Corwin-O’C-Seppäläinen-Zygouras 14)
Under P, the law of the shape of the output under geometric RSK is given by
the Whittaker measure on Rn

+ defined by

µa,b(dx) =
∏

ij

Γ(ai + bj)
−1e−1/xnΨa(x)Ψb(x)

n∏
i=1

dxi

xi
.
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Application to random polymers

Corollary
Suppose ai > 0 for each i and bj < 0 for each j. Then

Ee−stnn =

∫
ιRm

s
∑n

i=1(bi−λi)
∏

ij

Γ(λi − bj)
∏

ij

Γ(ai + λj)

Γ(ai + bj)
sn(λ)dλ,

where
sn(λ) =

1
(2πι)nn!

∏
i 6=j

Γ(λi − λj)
−1.
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Combinatorial approach

Recall: X = (xij) 7→ (tij) = T(X) = (P,Q).

The following is a refinement of the previous theorem.

Theorem (O’C-Seppäläinen-Zygouras 14)
The map (log xij)→ (log tij) has Jacobian ±1

For ν, λ ∈ Cn, ∏
ij

xνi+λj
ij = PλQν

The following identity holds:∑
ij

1
xij

=
1

t11
+ F(P) + F(Q)

This theorem (a) ‘explains’ the appearance of Whittaker functions and
(b) extends to models with symmetry.
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Analogue of the Cauchy-Littlewood identity

It follows that∏
ij

x−νi−λj
ij e−1/xij

dxij

xij
= P−λQ−νe−1/t11−F(P)−F(Q)

∏
ij

dtij
tij
.

Integrating both sides gives, for <(νi + λj) > 0:

Corollary (Stade 02)∏
ij

Γ(νi + λj) =

∫
Rn
+

e−1/xnΨν(x)Ψλ(x)

n∏
i=1

dxi

xi
.

This is equivalent to a Whittaker integral identity which was conjectured by
Bump (89) and proved by Stade (02). The integral is associated with
Archimedean L-factors of automorphic L-functions on GL(n,R)× GL(n,R).
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Local moves

Proof of second theorem uses new description of the gRSK map T as a
composition of a sequence of ‘local moves’ applied to the input matrix

x11

x12

x21

x13

x22

x31

x23

x32

x33
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Local moves

The basic move is:

a

c

b

d
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Local moves

The basic move is:

bc
ab + ac

c

b

bd + cd
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Combinatorial approach
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Integrable systems point of view

Quantum Toda chain

H = ∆− 2
n−1∑
i=1

exi+1−xi

Hψλ =
(∑

i

λ2
i
)
ψλ ψλ(x) = Ψ−λ(ex)

Associated diffusion process in Rn with generator

Lλ = 1
2ψλ(x)−1(H −∑λ2

i
)
ψλ(x) = 1

2∆ +∇ logψλ · ∇.
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Geometric RSK (in continuous time)

Let η : [0,∞)→ Rn be smooth (or Brownian) with η(0) = 0.

Define b(t) in upper triangular matrices by

ḃ = ε(η̇)b, b(0) = Id.,

where

ε(λ) =



λ1 1 0 . . . 0
0 λ2 1 . . . 0
.
.
.

. . .
.
.
.

λn−1 1
0 . . . λn

 .

Consider the ‘principal’ minors

∆k = det
[
bij

]
1≤i≤k, n−k+1≤j≤n

, 1 ≤ k ≤ n

and define xi = log(∆i/∆i−1), where ∆0 = 1.
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Geometric RSK (in continuous time)

The main results described above are in fact discrete-time versions of:

Theorem (O’C 12)
If η(t) = B(t) + λt then x(t) is a diffusion with generator Lλ.

What happens if we remove the ‘noise’?

Theorem (O’C 13)
If η(t) = λt then x(t) is a solution to the classical Toda flow with constants of
motion (Lax matrix eigenvalues) λ1, . . . , λn.

This phenomena extends to hyperbolic Calogero-Moser systems. In all cases,
the quantum systems (in imaginary time) are obtained by adding noise to the
constants of motion in particular representations of the classical systems.
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