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Pitman’s 2M − X theorem (1975)

If (X (t), t ≥ 0) is a one-dimensional Brownian motion and

M(t) = max
s≤t

B(s)

then
R(t) = 2M(t)− X (t)

is a three-dimensional Bessel process.
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Pitman’s 2M − X theorem (1975)

Equivalently, if (B(t), t ≥ 0) is a one-dimensional Brownian
motion, then

B(t)− 2 inf
s≤t

B(s), t ≥ 0

is a three-dimensional Bessel process.
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The Pitman transform
For continuous π : [0,∞)→ R with π(0) = 0, define Pπ by

Pπ(t) = π(t)− 2 inf
s≤t

π(s).
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The Pitman transform

For continuous π : [0,∞)→ R with π(0) = 0, define Pπ by

Pπ(t) = π(t)− 2 inf
s≤t

π(s).

Note that P2 = P.
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Generalised Pitman Transforms

Biane-Bougerol-O’C 05

Let V be a finite-dimensional Euclidean space.

For α ∈ V , set α∨ = 2α/(α, α).

For continuous η : [0,∞)→ V and α ∈ V , define

Pαη(t) = η(t)− inf
s≤t

α∨(η(s))α.

E.g. if V = R and α = 1, then

Pαη(t) = η(t)− 2 inf
s≤t

η(s).
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Hyperplane reflections and braid relations

For α ∈ V , let sα denote the reflection through α⊥:

sαλ = λ− α∨(λ)α.

Let β ∈ V with (α, β) = − |α| |β| cos(π/n). Then

sαsβsα · · · = sβsαsβ · · · n terms

Theorem (Biane, Bougerol, O’C 05)

PαPβPα · · · = PβPαPβ · · · n terms
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Finite Coxeter groups

W = finite group of isometries on V

S = {sα, α ∈ ∆} generating set of ‘simple’ reflections

If π/nαβ is the angle between hyperplanes α⊥ and β⊥ then

s2
α = 1 (sαsβ)nαβ = 1 α, β ∈ ∆

are the defining relations for W .

The (closure of)

C = {λ ∈ V : (α, λ) > 0, ∀α ∈ ∆}

is a fundamental domain for the action of W on V .
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Example

V = R3 α = e1 − e2 β = e2 − e3

W = 〈 sα, sβ 〉 ' S3 = 〈 (12), (23) 〉

α

β

C = {x1 > x2 > x3}
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Generalised Pitman Transforms II

Corollary (Biane-Bougerol-O’C 05)

For each w ∈W, we can define

Pw = Pα1 · · ·Pαk

where w = sα1 · · · sαk is any reduced decomposition of w.
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The longest element

Let W be a finite Coxeter group with generating simple
reflections S = {sα, α ∈ ∆}. The length of an element w ∈W is
the minimal number of terms required to write w as a product of
simple reflections. There is a unique w0 ∈W of maximal length.

For example, the longest element in S3 is

(13) = (12)(23)(12) = (23)(12)(23).

The longest element in Sn is

w0 =

(
1 2 · · · n
n n − 1 · · · 1

)
.
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Some properties of Pw0

Theorem (Biane-Bougerol-O’C 05)

For any continuous η : [0,∞)→ V with η(0) = 0, Pw0η(t) ∈ C
for all t ≥ 0. Furthermore,

P2
w0

= Pw0

First claim is a consequence of the braid relations.
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Brownian motion (conditioned to stay) in a cone

Let C be a convex cone in V .

Let p∗t (x , y) be the transition density of Brownian motion killed
when it exits C.

Biane (1993): There exists a unique (up to constant factors)
positive p∗-harmonic function h on C.

Brownian motion in the cone C is the corresponding Doob
h-transform, with generator and transition density

1
2

∆ +∇(log h) · ∇ qt (x , y) =
h(y)

h(x)
p∗t (x , y).
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The three-dimensional Bessel Process

If V = R and C = R+ then

p∗t (x , y) = pt (x , y)− pt (x ,−y) h(x) = x .

Brownian motion in R+ is the three-dimensional Bessel
process, with infinitessimal generator

1
2

d
dx2 +

1
x

d
dx
.
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Brownian motion in a Weyl chamber

Let W be a finite Coxeter group acting on V with fundamental
chamber C. Then

p∗t (x , y) =
∑

w∈W

ε(w)pt (x ,wy) h(x) =
∏
α∈Φ+

α∨(x).

If W = Sn and V = Rn, then

C = {x ∈ Rn : x1 > x2 > · · · > xn} h(x) =
∏
i<j

(xi − xj)

and the Brownian motion in C has the same law as the
eigenvalue process of a Brownian motion in the space of n × n
Hermitian matrices (aka Dyson’s Brownian motion).
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A generalisation of Pitman’s theorem

Let W be a finite Coxeter group acting on V with fundamental
chamber C.

Theorem (Biane-Bougerol-O’C 05)

If η is a Brownian motion in V then Pw0η has the same law as a
Brownian motion in C.

Proof uses queueing theoretic ideas and algebraic properties of
the Pitman operators.

Result for W = Sn case - O’C-Yor 02, Bougerol-Jeulin 02

For W = S2, reduces to Pitman’s 2M − X theorem.
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A concrete application

Brownian TASEP / ‘heavy traffic’ queues in series
Harrison 73, Harrison-Williams 87, Glynn-Whitt 91

Independent Brownian motions on R, each particle reflected off
particle its left, all particles started at the origin, denote by
X n(t) the position of the nth particle at time t .

Corollary (O’C-Yor 02, Bougerol-Jeulin 02)

The process X n(t) has the same law as the largest eigenvalue
of an n × n Hermitian Brownian motion started from zero.

Corollary (Baryshnikov 01, Gravner-Tracy-Widom 01)

The random variable X n(1) has the same law as the largest
eigenvalue of an n × n GUE random matrix.
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A more esoteric application

Duistermaat-Heckman measure for finite Coxeter groups
Biane-Bougerol-O’C 09

E.g. Here is a natural measure on the pentagon:
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Exponential version of Pitman’s 2M − X theorem

Theorem (Matsumoto-Yor ’99)

Let (Bt , t ≥ 0) be a standard one-dimensional Brownian motion
and define

Zt =

∫ t

0
e2Bs−Bt ds.

Then log Zt is a diffusion with infinitesimal generator

1
2

d2

dx2 +

(
d
dx

log K0(e−x )

)
d
dx
.

The above diffusion can be interpreted as BM conditioned, in
the sense of Doob, to survive in the potential e−x .
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Generalised Matsumoto-Yor transforms

Let V be a finite-dimensional Euclidean space.

For α ∈ V , set α∨ = 2α/(α, α).

For η : (0,∞)→ V and α ∈ V , define

Tαη(t) = η(t) +

(
log
∫ t

0
e−α(η(s))ds

)
α∨.
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Braid relations

Theorem [Biane, Bougerol, O’C 05]

Let α, β ∈ V with (α, β) = − cos(π/n), where n ∈ {2,3,4,6}.
Then

TαTβTα · · · = TβTαTβ · · · n terms

Thus, if W is a crystallographic finite reflection group acting on
V with simple reflections S = {sα, α ∈ ∆}, then for each
w ∈W , we can define

Tw = Tα1 · · ·Tαk

where w = sα1 · · · sαk is any reduced decomposition of w .
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The quantum Toda lattice

The quantum Toda lattice is a quantum integrable system with
Hamiltonian given by

H = ∆− 2
n−1∑
i=1

exi+1−xi .

There is a (particular) positive eigenfunction ψ0 with Hψ0 = 0
(known as a class one Whittaker function)

When n = 2,
ψ0(x) = 2K0

(
2e(x2−x1)/2

)
.
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Multi-dimensional version of Matsumoto-Yor theorem

Let V = Rn and W = Sn.

Theorem (O’C 12)

If η a standard Brownian motion in Rn then Tw0η is a diffusion in
Rn with generator given by the Doob transform

1
2
ψ−1

0 Hψ0 =
1
2

∆ +∇ logψ0 · ∇.

This diffusion can be interpreted as BM(Rn) conditioned, in the
sense of Doob, to survive in the potential

∑n−1
i=1 exi+1−xi (see

Katori 2011). It was introduced in [Baudoin-O’C 2011] and is
the analogue of Dyson’s BM in this setting.

Neil O’Connell 2M-X theorem, random polymers and integrable systems



A random polymer model

B1,B2, . . . be independent standard Brownian motions,

Z n
t =

∫
0=t0<t1<···<tn−1<tn=t

e
∑n

i=1 Bi (ti )−Bi (ti−1)dt1 . . . dtn−1.

This is the partition function of a 1 + 1 dim. directed polymer in
a random environment (O’C-Yor 01, O’C-Moriarty 07).

If η = (Bn, . . . ,B1) then log Z n
t = (Tw0η)1(t). The above

theorem thus determines the law of the partition function for this
model and moreover provides explicit determinantal formulae.
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A random polymer model

-

6

ttn−1tn−2t3t2t1

1

2

3

n − 1

n

A polymer realisation {0 < t1 < . . . < tn−1 < t}
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Further and related developments

Extensions to other root systems Chhaibi 2012

Discrete time versions in context of geometric RSK
correspondence, with applications to lattice polymers with
log-gamma weights and various symmetries; Whittaker
functions also play a central role in this setting
Corwin-O’C-Seppalainen-Zygouras 2011,
O’C-Seppalainen-Zygouras 2012

Tracy-Widom asymptotics (KPZ universality) for associated
random polymer models
Borodin-Corwin-Ferrari 2012, Borodin-Corwin-Remenik 2012

Determinantal formulae for law of solution of KPZ equation
(continuum random polymer)
Amir-Corwin-Quastel 2010, Sasamoto-Spohn 2010
Calabrese-Le Doussal-Rosso 2010, Dotsenko 2010
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