From Pitman's 2M - X theorem to random polymers and integrable systems

Neil O'Connell

University of Warwick

36th Conference on Stochastic Processes and their Applications

University of Colorado Boulder, July 2013

A (B) > A (B) > A (B) >

Acknowledgements

Collaborators

Marc Yor, Phillipe Biane, Philippe Bougerol.

References

Neil O'Connell and Marc Yor. A representation for non-colliding random walks. *Electron. Comm. Probab.* 7 (2002).

Philippe Biane, Philippe Bougerol and Neil O'Connell. Littelmann paths and Brownian paths. *Duke Math. J.* 130 (2005) 127–167.

Philippe Biane, Philippe Bougerol and Neil O'Connell. Continuous crystals and Duistermaat-Heckman measure for Coxeter groups. *Adv. Math.* 221 (2009) 1522-1583.

Neil O'Connell. Directed polymers and the quantum Toda lattice. *Ann. Probab.* 40 (2012) 437-458.

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト

Pitman's 2M - X theorem (1975)

If $(X(t), t \ge 0)$ is a one-dimensional Brownian motion and

$$M(t) = \max_{s \le t} B(s)$$

then

$$R(t) = 2M(t) - X(t)$$

is a three-dimensional Bessel process.

(日)

Pitman's 2M - X theorem (1975)

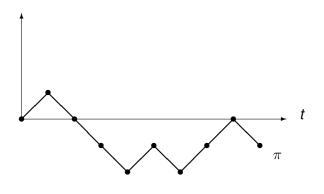
Equivalently, if $(B(t), t \ge 0)$ is a one-dimensional Brownian motion, then

$$B(t) - 2 \inf_{s \leq t} B(s), \qquad t \geq 0$$

is a three-dimensional Bessel process.

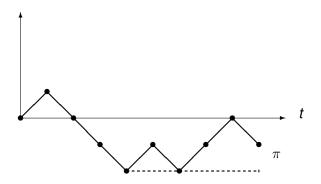
< 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > < 0 > > < 0 > > < 0 > > < 0 > < 0 > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0

For continuous $\pi : [0, \infty) \to \mathbb{R}$ with $\pi(0) = 0$, define $P\pi$ by $P\pi(t) = \pi(t) - 2 \inf_{s \le t} \pi(s).$



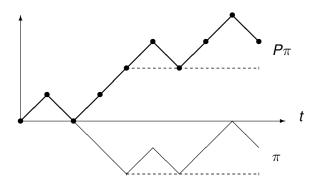
(日)

For continuous $\pi : [0, \infty) \to \mathbb{R}$ with $\pi(0) = 0$, define $P\pi$ by $P\pi(t) = \pi(t) - 2 \inf_{s \le t} \pi(s).$



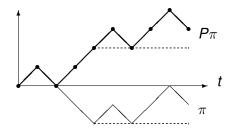
(日)

For continuous $\pi : [0, \infty) \to \mathbb{R}$ with $\pi(0) = 0$, define $P\pi$ by $P\pi(t) = \pi(t) - 2 \inf_{s \le t} \pi(s).$



For continuous $\pi : [0, \infty) \to \mathbb{R}$ with $\pi(0) = 0$, define $P\pi$ by $P\pi(t) = \pi(t) - 2 \inf_{s \le t} \pi(s).$

Note that $P^2 = P$.



(日)

Generalised Pitman Transforms

Biane-Bougerol-O'C 05

Let V be a finite-dimensional Euclidean space.

▲□ → ▲ □ → ▲ □ →

Generalised Pitman Transforms

Biane-Bougerol-O'C 05

Let V be a finite-dimensional Euclidean space.

For $\alpha \in V$, set $\alpha^{\vee} = 2\alpha/(\alpha, \alpha)$.

- 「同下」 (同下) - (同下)

Generalised Pitman Transforms

Biane-Bougerol-O'C 05

Let V be a finite-dimensional Euclidean space.

For $\alpha \in V$, set $\alpha^{\vee} = 2\alpha/(\alpha, \alpha)$.

For continuous $\eta : [0, \infty) \rightarrow V$ and $\alpha \in V$, define

$$P_{\alpha}\eta(t) = \eta(t) - \inf_{s \leq t} \alpha^{\vee}(\eta(s))\alpha.$$

E.g. if $V = \mathbb{R}$ and $\alpha = 1$, then

$$P_{\alpha}\eta(t) = \eta(t) - 2 \inf_{s \le t} \eta(s).$$

Hyperplane reflections and braid relations

For $\alpha \in V$, let s_{α} denote the reflection through α^{\perp} :

$$\mathbf{s}_{\alpha}\lambda = \lambda - \alpha^{\vee}(\lambda)\alpha.$$

(4月) (1日) (日)

Hyperplane reflections and braid relations

For $\alpha \in V$, let s_{α} denote the reflection through α^{\perp} :

$$\mathbf{s}_{\alpha}\lambda = \lambda - \alpha^{\vee}(\lambda)\alpha.$$

Let $\beta \in V$ with $(\alpha, \beta) = -|\alpha| |\beta| \cos(\pi/n)$. Then

 $s_{\alpha}s_{\beta}s_{\alpha}\cdots = s_{\beta}s_{\alpha}s_{\beta}\cdots n$ terms

Hyperplane reflections and braid relations

For $\alpha \in V$, let s_{α} denote the reflection through α^{\perp} :

$$\mathbf{s}_{\alpha}\lambda = \lambda - \alpha^{\vee}(\lambda)\alpha.$$

Let $\beta \in V$ with $(\alpha, \beta) = -|\alpha| |\beta| \cos(\pi/n)$. Then

$$s_{\alpha}s_{\beta}s_{\alpha}\cdots = s_{\beta}s_{\alpha}s_{\beta}\cdots n$$
 terms

Theorem (Biane, Bougerol, O'C 05)

$$P_{\alpha}P_{\beta}P_{\alpha}\cdots = P_{\beta}P_{\alpha}P_{\beta}\cdots$$
 n terms

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト

Finite Coxeter groups

W = finite group of isometries on V

 $S = \{s_{\alpha}, \alpha \in \Delta\}$ generating set of 'simple' reflections

・ロト ・ 雪 ト ・ ヨ ト

Finite Coxeter groups

W = finite group of isometries on V $S = \{s_{\alpha}, \alpha \in \Delta\}$ generating set of 'simple' reflections If $\pi/n_{\alpha\beta}$ is the angle between hyperplanes α^{\perp} and β^{\perp} then $s_{\alpha}^{2} = 1$ $(s_{\alpha}s_{\beta})^{n_{\alpha\beta}} = 1$ $\alpha, \beta \in \Delta$

are the defining relations for W.

Finite Coxeter groups

W = finite group of isometries on V $S = \{s_{\alpha}, \alpha \in \Delta\}$ generating set of 'simple' reflections If $\pi/n_{\alpha\beta}$ is the angle between hyperplanes α^{\perp} and β^{\perp} then $s_{\alpha}^{2} = 1$ $(s_{\alpha}s_{\beta})^{n_{\alpha\beta}} = 1$ $\alpha, \beta \in \Delta$

are the defining relations for W.

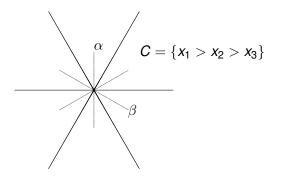
The (closure of)

$$C = \{\lambda \in V : (\alpha, \lambda) > 0, \forall \alpha \in \Delta\}$$

is a fundamental domain for the action of W on V.

Example

$$V = \mathbb{R}^3 \qquad \alpha = \boldsymbol{e}_1 - \boldsymbol{e}_2 \qquad \beta = \boldsymbol{e}_2 - \boldsymbol{e}_3$$
$$W = \langle \boldsymbol{s}_{\alpha}, \, \boldsymbol{s}_{\beta} \rangle \simeq \boldsymbol{S}_3 = \langle \, (12), \, (23) \, \rangle$$



< 冊

► 4 Ξ

Generalised Pitman Transforms II

Corollary (Biane-Bougerol-O'C 05)

For each $w \in W$, we can define

$$P_{w} = P_{\alpha_{1}} \cdots P_{\alpha_{k}}$$

where $w = s_{\alpha_1} \cdots s_{\alpha_k}$ is any reduced decomposition of w.

The longest element

Let *W* be a finite Coxeter group with generating simple reflections $S = \{s_{\alpha}, \alpha \in \Delta\}$. The length of an element $w \in W$ is the minimal number of terms required to write *w* as a product of simple reflections. There is a unique $w_0 \in W$ of maximal length.

For example, the longest element in S_3 is

$$(13) = (12)(23)(12) = (23)(12)(23).$$

The longest element in S_n is

$$w_0=\left(\begin{array}{cccc}1&2&\cdots&n\\n&n-1&\cdots&1\end{array}\right).$$

(日本) (日本) (日本)

Some properties of P_{w_0}

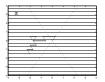
Theorem (Biane-Bougerol-O'C 05)

For any continuous $\eta : [0, \infty) \to V$ with $\eta(0) = 0$, $P_{w_0}\eta(t) \in \overline{C}$ for all $t \ge 0$. Furthermore,

$$P_{w_0}^2 = P_{w_0}$$

First claim is a consequence of the braid relations.

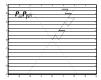
• □ ▶ • □ ▶ • □ ▶ • □ ▶



	· - ·				÷.		
	an	<u>.</u>			-		-
	_		_	1	_	_	Ι.
							-
		\sim	X				
		-	<u> </u>				
_				÷.,			
		2		-			
_	1						-
_	2 2	.4	0			1	_

ļ	P.,							
, L								
ļ					È	1		
ļ	-3	4	4	0		-	1	

77		
	Á	
	·	
	7	



Neil O'Connell 2M-X theorem, random polymers and integrable systems

◆□▶ ◆御▶ ◆注▶ ◆注▶

æ

Let C be a convex cone in V.

• (10) • (10)

Let C be a convex cone in V.

Let $p_t^*(x, y)$ be the transition density of Brownian motion killed when it exits *C*.

・ 戸 ト ・ 三 ト ・ 三 ト

Let C be a convex cone in V.

Let $p_t^*(x, y)$ be the transition density of Brownian motion killed when it exits *C*.

Biane (1993): There exists a unique (up to constant factors) positive p^* -harmonic function *h* on *C*.

A (1) > A (2) > A (2) > A

Let C be a convex cone in V.

Let $p_t^*(x, y)$ be the transition density of Brownian motion killed when it exits *C*.

Biane (1993): There exists a unique (up to constant factors) positive p^* -harmonic function *h* on *C*.

Brownian motion in the cone C is the corresponding Doob h-transform, with generator and transition density

$$\frac{1}{2}\Delta + \nabla(\log h) \cdot \nabla \qquad \qquad q_t(x,y) = \frac{h(y)}{h(x)} p_t^*(x,y).$$

The three-dimensional Bessel Process

If $V = \mathbb{R}$ and $C = \mathbb{R}_+$ then

$$p_t^*(x, y) = p_t(x, y) - p_t(x, -y)$$
 $h(x) = x.$

Brownian motion in \mathbb{R}_+ is the three-dimensional Bessel process, with infinitessimal generator

$$\frac{1}{2}\frac{d}{dx^2} + \frac{1}{x}\frac{d}{dx}.$$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Brownian motion in a Weyl chamber

Let W be a finite Coxeter group acting on V with fundamental chamber C. Then

$$p_t^*(x,y) = \sum_{w \in W} \varepsilon(w) p_t(x,wy) \qquad h(x) = \prod_{\alpha \in \Phi^+} \alpha^{\vee}(x).$$

< 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > < 0 > > < 0 > > < 0 > > < 0 > < 0 > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0

Brownian motion in a Weyl chamber

Let W be a finite Coxeter group acting on V with fundamental chamber C. Then

$$p_t^*(x,y) = \sum_{w \in W} \varepsilon(w) p_t(x,wy) \qquad h(x) = \prod_{\alpha \in \Phi^+} \alpha^{\vee}(x).$$

If $W = S_n$ and $V = \mathbb{R}^n$, then

$$C = \{x \in \mathbb{R}^n : x_1 > x_2 > \cdots > x_n\}$$
 $h(x) = \prod_{i < j} (x_i - x_j)$

and the Brownian motion in *C* has the same law as the eigenvalue process of a Brownian motion in the space of $n \times n$ Hermitian matrices (aka Dyson's Brownian motion).

・ロット (母) ・ ヨ) ・ ・ ヨ)

A generalisation of Pitman's theorem

Let W be a finite Coxeter group acting on V with fundamental chamber C.

Theorem (Biane-Bougerol-O'C 05)

If η is a Brownian motion in V then $P_{w_0}\eta$ has the same law as a Brownian motion in C.

Proof uses queueing theoretic ideas and algebraic properties of the Pitman operators.

Result for $W = S_n$ case - O'C-Yor 02, Bougerol-Jeulin 02

For $W = S_2$, reduces to Pitman's 2M - X theorem.

= nar

A concrete application

Brownian TASEP / 'heavy traffic' queues in series Harrison 73, Harrison-Williams 87, Glynn-Whitt 91

Independent Brownian motions on \mathbb{R} , each particle reflected off particle its left, all particles started at the origin, denote by $X^n(t)$ the position of the n^{th} particle at time *t*.

Corollary (O'C-Yor 02, Bougerol-Jeulin 02)

The process $X^n(t)$ has the same law as the largest eigenvalue of an $n \times n$ Hermitian Brownian motion started from zero.

Corollary (Baryshnikov 01, Gravner-Tracy-Widom 01)

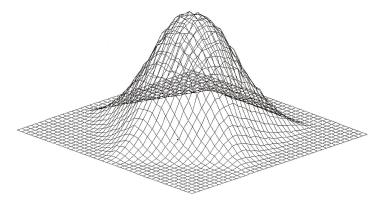
The random variable $X^n(1)$ has the same law as the largest eigenvalue of an $n \times n$ GUE random matrix.

(日)

A more esoteric application

Duistermaat-Heckman measure for finite Coxeter groups *Biane-Bougerol-O'C 09*

E.g. Here is a natural measure on the pentagon:



< 同 > < 回 > < 回

Exponential version of Pitman's 2M - X theorem

Theorem (Matsumoto-Yor '99)

Let $(B_t, t \ge 0)$ be a standard one-dimensional Brownian motion and define

$$Z_t = \int_0^t e^{2B_s - B_t} ds.$$

Then $\log Z_t$ is a diffusion with infinitesimal generator

$$\frac{1}{2}\frac{d^2}{dx^2} + \left(\frac{d}{dx}\log K_0(e^{-x})\right)\frac{d}{dx}.$$

The above diffusion can be interpreted as BM conditioned, in the sense of Doob, to survive in the potential e^{-x} .

< 同 > < 回 > < 回 > <

Generalised Matsumoto-Yor transforms

Let V be a finite-dimensional Euclidean space.

For $\alpha \in V$, set $\alpha^{\vee} = 2\alpha/(\alpha, \alpha)$.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Generalised Matsumoto-Yor transforms

Let *V* be a finite-dimensional Euclidean space. For $\alpha \in V$, set $\alpha^{\vee} = 2\alpha/(\alpha, \alpha)$. For $\eta : (0, \infty) \to V$ and $\alpha \in V$, define

$$T_{lpha}\eta(t) = \eta(t) + \left(\log\int_0^t e^{-lpha(\eta(s))} ds\right) lpha^{ee}.$$

- 同下 - ヨト - ヨト

Braid relations

Theorem [Biane, Bougerol, O'C 05] Let $\alpha, \beta \in V$ with $(\alpha, \beta) = -\cos(\pi/n)$, where $n \in \{2, 3, 4, 6\}$. Then

$$T_{\alpha}T_{\beta}T_{\alpha}\cdots = T_{\beta}T_{\alpha}T_{\beta}\cdots n$$
 terms

Thus, if *W* is a crystallographic finite reflection group acting on *V* with simple reflections $S = \{s_{\alpha}, \alpha \in \Delta\}$, then for each $w \in W$, we can define

$$T_{W}=T_{\alpha_{1}}\cdots T_{\alpha_{k}}$$

where $w = s_{\alpha_1} \cdots s_{\alpha_k}$ is *any* reduced decomposition of *w*.

The quantum Toda lattice

The quantum Toda lattice is a quantum integrable system with Hamiltonian given by

$$H=\Delta-2\sum_{i=1}^{n-1}e^{x_{i+1}-x_i}.$$

There is a (particular) positive eigenfunction ψ_0 with $H\psi_0 = 0$ (known as a class one Whittaker function)

When n = 2, $\psi_0(x) = 2K_0 \left(2e^{(x_2 - x_1)/2} \right)$.

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト

Multi-dimensional version of Matsumoto-Yor theorem

Let
$$V = \mathbb{R}^n$$
 and $W = S_n$.

Theorem (O'C 12)

If η a standard Brownian motion in \mathbb{R}^n then $T_{w_0}\eta$ is a diffusion in \mathbb{R}^n with generator given by the Doob transform

$$\frac{1}{2}\psi_0^{-1}H\psi_0=\frac{1}{2}\Delta+\nabla\log\psi_0\cdot\nabla.$$

This diffusion can be interpreted as BM(\mathbb{R}^n) conditioned, in the sense of Doob, to survive in the potential $\sum_{i=1}^{n-1} e^{x_{i+1}-x_i}$ (see Katori 2011). It was introduced in [Baudoin-O'C 2011] and is the analogue of Dyson's BM in this setting.

A random polymer model

 B_1, B_2, \ldots be independent standard Brownian motions,

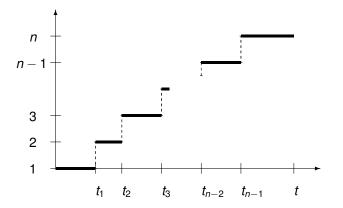
$$Z_t^n = \int_{0=t_0 < t_1 < \cdots < t_{n-1} < t_n = t} e^{\sum_{i=1}^n B_i(t_i) - B_i(t_{i-1})} dt_1 \dots dt_{n-1}.$$

This is the partition function of a 1 + 1 dim. directed polymer in a random environment (O'C-Yor 01, O'C-Moriarty 07).

If $\eta = (B_n, ..., B_1)$ then $\log Z_t^n = (T_{w_0}\eta)_1(t)$. The above theorem thus determines the law of the partition function for this model and moreover provides explicit determinantal formulae.

・ロット (母) ・ ヨ) ・ ・ ヨ)

A random polymer model



A polymer realisation $\{0 < t_1 < ... < t_{n-1} < t\}$

A B A B A
 B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

-

Extensions to other root systems Chhaibi 2012

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Extensions to other root systems Chhaibi 2012

Discrete time versions in context of geometric RSK correspondence, with applications to lattice polymers with log-gamma weights and various symmetries; Whittaker functions also play a central role in this setting *Corwin-O'C-Seppalainen-Zygouras 2011, O'C-Seppalainen-Zygouras 2012*

A (B) > A (B) > A (B) >

Extensions to other root systems Chhaibi 2012

Discrete time versions in context of geometric RSK correspondence, with applications to lattice polymers with log-gamma weights and various symmetries; Whittaker functions also play a central role in this setting *Corwin-O'C-Seppalainen-Zygouras 2011, O'C-Seppalainen-Zygouras 2012*

Tracy-Widom asymptotics (KPZ universality) for associated random polymer models *Borodin-Corwin-Ferrari 2012, Borodin-Corwin-Remenik 2012*

Extensions to other root systems Chhaibi 2012

Discrete time versions in context of geometric RSK correspondence, with applications to lattice polymers with log-gamma weights and various symmetries; Whittaker functions also play a central role in this setting *Corwin-O'C-Seppalainen-Zygouras 2011, O'C-Seppalainen-Zygouras 2012*

Tracy-Widom asymptotics (KPZ universality) for associated random polymer models *Borodin-Corwin-Ferrari 2012, Borodin-Corwin-Remenik 2012*

Determinantal formulae for law of solution of KPZ equation (continuum random polymer) *Amir-Corwin-Quastel 2010, Sasamoto-Spohn 2010 Calabrese-Le Doussal-Rosso 2010, Dotsenko 2010*

• □ ▶ • □ ▶ • □ ▶ • □ ▶