From Pitman's $2 M-X$ theorem to random polymers and integrable systems

Neil O'Connell

University of Warwick

36th Conference on Stochastic Processes and their Applications
University of Colorado Boulder, July 2013

Acknowledgements

Collaborators

Marc Yor, Phillipe Biane, Philippe Bougerol.

References

Neil O'Connell and Marc Yor. A representation for non-colliding random walks. Electron. Comm. Probab. 7 (2002).
Philippe Biane, Philippe Bougerol and Neil O'Connell. Littelmann paths and Brownian paths. Duke Math. J. 130 (2005) 127-167.

Philippe Biane, Philippe Bougerol and Neil O'Connell. Continuous crystals and Duistermaat-Heckman measure for Coxeter groups. Adv. Math. 221 (2009) 1522-1583.

Neil O'Connell. Directed polymers and the quantum Toda lattice. Ann. Probab. 40 (2012) 437-458.

Pitman's $2 M-X$ theorem (1975)

If $(X(t), t \geq 0)$ is a one-dimensional Brownian motion and

$$
M(t)=\max _{s \leq t} B(s)
$$

then

$$
R(t)=2 M(t)-X(t)
$$

is a three-dimensional Bessel process.

Pitman's $2 M-X$ theorem (1975)

Equivalently, if $(B(t), t \geq 0)$ is a one-dimensional Brownian motion, then

$$
B(t)-2 \inf _{s \leq t} B(s), \quad t \geq 0
$$

is a three-dimensional Bessel process.

The Pitman transform

For continuous $\pi:[0, \infty) \rightarrow \mathbb{R}$ with $\pi(0)=0$, define $P \pi$ by

$$
P \pi(t)=\pi(t)-2 \inf _{s \leq t} \pi(s) .
$$

The Pitman transform

For continuous $\pi:[0, \infty) \rightarrow \mathbb{R}$ with $\pi(0)=0$, define $P \pi$ by

$$
P \pi(t)=\pi(t)-2 \inf _{s \leq t} \pi(s) .
$$

The Pitman transform

For continuous $\pi:[0, \infty) \rightarrow \mathbb{R}$ with $\pi(0)=0$, define $P \pi$ by

$$
P \pi(t)=\pi(t)-2 \inf _{s \leq t} \pi(s) .
$$

The Pitman transform

For continuous $\pi:[0, \infty) \rightarrow \mathbb{R}$ with $\pi(0)=0$, define $P \pi$ by

$$
P \pi(t)=\pi(t)-2 \inf _{s \leq t} \pi(s)
$$

Note that $P^{2}=P$.

Generalised Pitman Transforms

Biane-Bougerol-O'C 05
Let V be a finite-dimensional Euclidean space.

Generalised Pitman Transforms

Biane-Bougerol-O'C 05
Let V be a finite-dimensional Euclidean space.
For $\alpha \in V$, set $\alpha^{\vee}=2 \alpha /(\alpha, \alpha)$.

Generalised Pitman Transforms

Biane-Bougerol-O'C 05
Let V be a finite-dimensional Euclidean space.
For $\alpha \in V$, set $\alpha^{\vee}=2 \alpha /(\alpha, \alpha)$.
For continuous $\eta:[0, \infty) \rightarrow V$ and $\alpha \in V$, define

$$
P_{\alpha} \eta(t)=\eta(t)-\inf _{s \leq t} \alpha^{\vee}(\eta(s)) \alpha
$$

E.g. if $V=\mathbb{R}$ and $\alpha=1$, then

$$
P_{\alpha} \eta(t)=\eta(t)-2 \inf _{s \leq t} \eta(s)
$$

Hyperplane reflections and braid relations

For $\alpha \in V$, let s_{α} denote the reflection through α^{\perp} :

$$
\boldsymbol{s}_{\alpha} \lambda=\lambda-\alpha^{\vee}(\lambda) \alpha
$$

Hyperplane reflections and braid relations

For $\alpha \in V$, let s_{α} denote the reflection through α^{\perp} :

$$
\boldsymbol{s}_{\alpha} \lambda=\lambda-\alpha^{\vee}(\lambda) \alpha
$$

Let $\beta \in V$ with $(\alpha, \beta)=-|\alpha||\beta| \cos (\pi / n)$. Then

$$
\boldsymbol{s}_{\alpha} \boldsymbol{s}_{\beta} \boldsymbol{s}_{\alpha} \cdots=\boldsymbol{s}_{\beta} \boldsymbol{s}_{\alpha} \boldsymbol{s}_{\beta} \cdots \quad n \text { terms }
$$

Hyperplane reflections and braid relations

For $\alpha \in V$, let s_{α} denote the reflection through α^{\perp} :

$$
\boldsymbol{s}_{\alpha} \lambda=\lambda-\alpha^{\vee}(\lambda) \alpha
$$

Let $\beta \in V$ with $(\alpha, \beta)=-|\alpha||\beta| \cos (\pi / n)$. Then

$$
\boldsymbol{s}_{\alpha} \boldsymbol{s}_{\beta} \boldsymbol{s}_{\alpha} \cdots=\boldsymbol{s}_{\beta} \boldsymbol{s}_{\alpha} \boldsymbol{s}_{\beta} \cdots \quad n \text { terms }
$$

Theorem (Biane, Bougerol, O'C 05)

$$
P_{\alpha} P_{\beta} P_{\alpha} \cdots=P_{\beta} P_{\alpha} P_{\beta} \cdots \quad n \text { terms }
$$

Finite Coxeter groups

$W=$ finite group of isometries on V
$S=\left\{s_{\alpha}, \alpha \in \Delta\right\}$ generating set of 'simple' reflections

Finite Coxeter groups

$W=$ finite group of isometries on V
$S=\left\{s_{\alpha}, \alpha \in \Delta\right\}$ generating set of 'simple' reflections
If $\pi / n_{\alpha \beta}$ is the angle between hyperplanes α^{\perp} and β^{\perp} then

$$
s_{\alpha}^{2}=1 \quad\left(s_{\alpha} s_{\beta}\right)^{n_{\alpha \beta}}=1 \quad \alpha, \beta \in \Delta
$$

are the defining relations for W.

Finite Coxeter groups

$W=$ finite group of isometries on V
$S=\left\{s_{\alpha}, \alpha \in \Delta\right\}$ generating set of 'simple' reflections
If $\pi / n_{\alpha \beta}$ is the angle between hyperplanes α^{\perp} and β^{\perp} then

$$
s_{\alpha}^{2}=1 \quad\left(s_{\alpha} s_{\beta}\right)^{n_{\alpha \beta}}=1 \quad \alpha, \beta \in \Delta
$$

are the defining relations for W.
The (closure of)

$$
\boldsymbol{C}=\{\lambda \in V:(\alpha, \lambda)>0, \forall \alpha \in \Delta\}
$$

is a fundamental domain for the action of W on V.

Example

$$
\begin{aligned}
& V=\mathbb{R}^{3} \quad \alpha=e_{1}-e_{2} \quad \beta=e_{2}-e_{3} \\
& W=\left\langle s_{\alpha}, s_{\beta}\right\rangle \simeq s_{3}=\langle(12),(23)\rangle
\end{aligned}
$$

Generalised Pitman Transforms II

Corollary (Biane-Bougerol-O'C 05)
For each $w \in W$, we can define

$$
P_{w}=P_{\alpha_{1}} \cdots P_{\alpha_{k}}
$$

where $w=s_{\alpha_{1}} \cdots s_{\alpha_{k}}$ is any reduced decomposition of w.

The longest element

Let W be a finite Coxeter group with generating simple reflections $S=\left\{s_{\alpha}, \alpha \in \Delta\right\}$. The length of an element $w \in W$ is the minimal number of terms required to write w as a product of simple reflections. There is a unique $w_{0} \in W$ of maximal length.
For example, the longest element in S_{3} is

$$
(13)=(12)(23)(12)=(23)(12)(23)
$$

The longest element in S_{n} is

$$
w_{0}=\left(\begin{array}{cccc}
1 & 2 & \cdots & n \\
n & n-1 & \cdots & 1
\end{array}\right) .
$$

Some properties of $P_{w_{0}}$

Theorem (Biane-Bougerol-O'C 05)

For any continuous $\eta:[0, \infty) \rightarrow V$ with $\eta(0)=0, P_{w_{0}} \eta(t) \in \bar{C}$ for all $t \geq 0$. Furthermore,

$$
P_{w_{0}}^{2}=P_{w_{0}}
$$

First claim is a consequence of the braid relations.

Brownian motion (conditioned to stay) in a cone

Let C be a convex cone in V.

Brownian motion (conditioned to stay) in a cone

Let C be a convex cone in V.
Let $p_{t}^{*}(x, y)$ be the transition density of Brownian motion killed when it exits C.

Brownian motion (conditioned to stay) in a cone

Let C be a convex cone in V.
Let $p_{t}^{*}(x, y)$ be the transition density of Brownian motion killed when it exits C.

Biane (1993): There exists a unique (up to constant factors) positive p^{*}-harmonic function h on C.

Brownian motion (conditioned to stay) in a cone

Let C be a convex cone in V.
Let $p_{t}^{*}(x, y)$ be the transition density of Brownian motion killed when it exits C.

Biane (1993): There exists a unique (up to constant factors) positive p^{*}-harmonic function h on C.

Brownian motion in the cone C is the corresponding Doob h-transform, with generator and transition density

$$
\frac{1}{2} \Delta+\nabla(\log h) \cdot \nabla \quad \quad q_{t}(x, y)=\frac{h(y)}{h(x)} p_{t}^{*}(x, y)
$$

The three-dimensional Bessel Process

If $V=\mathbb{R}$ and $C=\mathbb{R}_{+}$then

$$
p_{t}^{*}(x, y)=p_{t}(x, y)-p_{t}(x,-y) \quad h(x)=x
$$

Brownian motion in \mathbb{R}_{+}is the three-dimensional Bessel process, with infinitessimal generator

$$
\frac{1}{2} \frac{d}{d x^{2}}+\frac{1}{x} \frac{d}{d x}
$$

Brownian motion in a Weyl chamber

Let W be a finite Coxeter group acting on V with fundamental chamber C. Then

$$
p_{t}^{*}(x, y)=\sum_{w \in W} \varepsilon(w) p_{t}(x, w y) \quad h(x)=\prod_{\alpha \in \Phi^{+}} \alpha^{\vee}(x)
$$

Brownian motion in a Weyl chamber

Let W be a finite Coxeter group acting on V with fundamental chamber C. Then

$$
p_{t}^{*}(x, y)=\sum_{w \in W} \varepsilon(w) p_{t}(x, w y) \quad h(x)=\prod_{\alpha \in \Phi^{+}} \alpha^{\vee}(x)
$$

If $W=S_{n}$ and $V=\mathbb{R}^{n}$, then

$$
C=\left\{x \in \mathbb{R}^{n}: x_{1}>x_{2}>\cdots>x_{n}\right\} \quad h(x)=\prod_{i<j}\left(x_{i}-x_{j}\right)
$$

and the Brownian motion in C has the same law as the eigenvalue process of a Brownian motion in the space of $n \times n$ Hermitian matrices (aka Dyson's Brownian motion).

A generalisation of Pitman's theorem

Let W be a finite Coxeter group acting on V with fundamental chamber C.

Theorem (Biane-Bougerol-O'C 05)

If η is a Brownian motion in V then $P_{w_{0}} \eta$ has the same law as a Brownian motion in C.

Proof uses queueing theoretic ideas and algebraic properties of the Pitman operators.
Result for $W=S_{n}$ case - O'C-Yor 02, Bougerol-Jeulin 02
For $W=S_{2}$, reduces to Pitman's $2 M-X$ theorem.

A concrete application

Brownian TASEP / 'heavy traffic' queues in series Harrison 73, Harrison-Williams 87, Glynn-Whitt 91

Independent Brownian motions on \mathbb{R}, each particle reflected off particle its left, all particles started at the origin, denote by $X^{n}(t)$ the position of the $n^{t h}$ particle at time t.

Corollary (O'C-Yor 02, Bougerol-Jeulin 02)
The process $X^{n}(t)$ has the same law as the largest eigenvalue of an $n \times n$ Hermitian Brownian motion started from zero.

Corollary (Baryshnikov 01, Gravner-Tracy-Widom 01)
The random variable $X^{n}(1)$ has the same law as the largest eigenvalue of an $n \times n$ GUE random matrix.

A more esoteric application

Duistermaat-Heckman measure for finite Coxeter groups Biane-Bougerol-O'C 09
E.g. Here is a natural measure on the pentagon:

Neil O'Connell
2M-X theorem, random polymers and integrable systems

Exponential version of Pitman's $2 M-X$ theorem

Theorem (Matsumoto-Yor '99)
Let $\left(B_{t}, t \geq 0\right)$ be a standard one-dimensional Brownian motion and define

$$
Z_{t}=\int_{0}^{t} e^{2 B_{s}-B_{t}} d s
$$

Then $\log Z_{t}$ is a diffusion with infinitesimal generator

$$
\frac{1}{2} \frac{d^{2}}{d x^{2}}+\left(\frac{d}{d x} \log K_{0}\left(e^{-x}\right)\right) \frac{d}{d x} .
$$

The above diffusion can be interpreted as BM conditioned, in the sense of Doob, to survive in the potential e^{-x}.

Generalised Matsumoto-Yor transforms

Let V be a finite-dimensional Euclidean space.
For $\alpha \in V$, set $\alpha^{\vee}=2 \alpha /(\alpha, \alpha)$.

Generalised Matsumoto-Yor transforms

Let V be a finite-dimensional Euclidean space.
For $\alpha \in V$, set $\alpha^{V}=2 \alpha /(\alpha, \alpha)$.
For $\eta:(0, \infty) \rightarrow V$ and $\alpha \in V$, define

$$
T_{\alpha} \eta(t)=\eta(t)+\left(\log \int_{0}^{t} e^{-\alpha(\eta(s))} d s\right) \alpha^{\vee} .
$$

Braid relations

Theorem [Biane, Bougerol, O'C 05]
Let $\alpha, \beta \in V$ with $(\alpha, \beta)=-\cos (\pi / n)$, where $n \in\{2,3,4,6\}$. Then

$$
T_{\alpha} T_{\beta} T_{\alpha} \cdots=T_{\beta} T_{\alpha} T_{\beta} \cdots \quad n \text { terms }
$$

Thus, if W is a crystallographic finite reflection group acting on V with simple reflections $S=\left\{s_{\alpha}, \alpha \in \Delta\right\}$, then for each $w \in W$, we can define

$$
T_{w}=T_{\alpha_{1}} \cdots T_{\alpha_{k}}
$$

where $w=s_{\alpha_{1}} \cdots s_{\alpha_{k}}$ is any reduced decomposition of w.

The quantum Toda lattice

The quantum Toda lattice is a quantum integrable system with Hamiltonian given by

$$
H=\Delta-2 \sum_{i=1}^{n-1} e^{x_{i+1}-x_{i}}
$$

There is a (particular) positive eigenfunction ψ_{0} with $H \psi_{0}=0$ (known as a class one Whittaker function)

When $n=2$,

$$
\psi_{0}(x)=2 K_{0}\left(2 e^{\left(x_{2}-x_{1}\right) / 2}\right)
$$

Multi-dimensional version of Matsumoto-Yor theorem

Let $V=\mathbb{R}^{n}$ and $W=S_{n}$.
Theorem (O'C 12)
If η a standard Brownian motion in \mathbb{R}^{n} then $T_{w_{0}} \eta$ is a diffusion in \mathbb{R}^{n} with generator given by the Doob transform

$$
\frac{1}{2} \psi_{0}^{-1} H \psi_{0}=\frac{1}{2} \Delta+\nabla \log \psi_{0} \cdot \nabla .
$$

This diffusion can be interpreted as $\mathrm{BM}\left(\mathbb{R}^{n}\right)$ conditioned, in the sense of Doob, to survive in the potential $\sum_{i=1}^{n-1} e^{x_{i+1}-x_{i}}$ (see Katori 2011). It was introduced in [Baudoin-O'C 2011] and is the analogue of Dyson's BM in this setting.

A random polymer model

B_{1}, B_{2}, \ldots be independent standard Brownian motions,

$$
Z_{t}^{n}=\int_{0=t_{0}<t_{1}<\cdots<t_{n-1}<t_{n}=t} e^{\sum_{i=1}^{n} B_{i}\left(t_{i}\right)-B_{i}\left(t_{i-1}\right)} d t_{1} \ldots d t_{n-1}
$$

This is the partition function of a $1+1$ dim. directed polymer in a random environment (O'C-Yor 01, O'C-Moriarty 07).
If $\eta=\left(B_{n}, \ldots, B_{1}\right)$ then $\log Z_{t}^{n}=\left(T_{w_{0}} \eta\right)_{1}(t)$. The above theorem thus determines the law of the partition function for this model and moreover provides explicit determinantal formulae.

A random polymer model

A polymer realisation $\left\{0<t_{1}<\ldots<t_{n-1}<t\right\}$

Further and related developments

Extensions to other root systems Chhaibi 2012

Further and related developments

Extensions to other root systems Chhaibi 2012
Discrete time versions in context of geometric RSK correspondence, with applications to lattice polymers with log-gamma weights and various symmetries; Whittaker functions also play a central role in this setting
Corwin-O'C-Seppalainen-Zygouras 2011,
O'C-Seppalainen-Zygouras 2012

Further and related developments

Extensions to other root systems Chhaibi 2012
Discrete time versions in context of geometric RSK correspondence, with applications to lattice polymers with log-gamma weights and various symmetries; Whittaker functions also play a central role in this setting
Corwin-O'C-Seppalainen-Zygouras 2011,
O'C-Seppalainen-Zygouras 2012
Tracy-Widom asymptotics (KPZ universality) for associated random polymer models
Borodin-Corwin-Ferrari 2012, Borodin-Corwin-Remenik 2012

Further and related developments

Extensions to other root systems Chhaibi 2012
Discrete time versions in context of geometric RSK correspondence, with applications to lattice polymers with log-gamma weights and various symmetries; Whittaker functions also play a central role in this setting
Corwin-O'C-Seppalainen-Zygouras 2011,
O'C-Seppalainen-Zygouras 2012
Tracy-Widom asymptotics (KPZ universality) for associated random polymer models
Borodin-Corwin-Ferrari 2012, Borodin-Corwin-Remenik 2012
Determinantal formulae for law of solution of KPZ equation (continuum random polymer)
Amir-Corwin-Quastel 2010, Sasamoto-Spohn 2010
Calabrese-Le Doussal-Rosso 2010, Dotsenko 2010

