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Abstract
We study some path transformations related to Pitman’s theorem [28, Th. 1.3] on
Brownian motion and the three-dimensional Bessel process. We relate these to the
Littelmann path model (see [22]) and give applications to representation theory and
to Brownian motion in a Weyl chamber.
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1. Introduction
Some transformations defined on continuous paths with values in a vector space
have appeared in recent years in two separate parts of mathematics. On the one hand,
Littelmann [22] developed his path model in order to give a unified combinatorial setup
for representation theory, generalizing the theory of Young tableaux to semisimple
or Kac-Moody Lie algebras of type other than A. On the other hand, in probability
theory, several path transformations have been introduced that yield a construction of
Brownian motion in a Weyl chamber starting from a Brownian motion in the cor-
responding Cartan Lie algebra. The oldest and simplest of these transformations
comes from Pitman’s theorem [28, Th. 1.3], which states that if (Bt )t≥0 is a one-
dimensional Brownian motion, then the stochastic process Rt := Bt − 2 inf0≤s≤t Bs is
a three-dimensional Bessel process; that is, it is distributed as the Euclidean norm of
a three-dimensional Brownian motion. (Actually, Pitman stated his theorem with the
transformation 2 sup0≤s≤t Bs − Bt , but thanks to the symmetry of Brownian motion,
this is clearly equivalent to the above statement.) It turns out that the fact that, here,
the dimension of the Brownian motion is equal to one, the rank of the group SU(2),
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while three, the dimension of the Bessel process, is the dimension of the group SU(2),
is not a mere coincidence but a fundamental fact that we clarify in the following.
Pitman’s theorem has been extended in several ways. The first step has been the result
of Gravner, Tracy, and Widom [15] and of Baryshnikov [1]; it states that the largest
eigenvalue of a random (n × n)-Hermitian matrix in the Gaussian unitary ensemble
(GUE) is distributed as the random variable

sup
1=tn≥tn−1≥···≥t1≥t0=0

n∑
i=1

(
Bi(ti) − Bi(ti−1)

)
,

where (B1, . . . , Bn) is a standard n-dimensional Brownian motion. This result in turn
was generalized in [7] and [27]. These extensions involve path transformations that
generalize Pitman’s transform and are closely related to the Littelmann path model.
One of the purposes of this article is to clarify these connections as well as to settle
a number of questions raised in these works. In the course of these investigations, we
derive several applications to representation theory. These path transformations occur
in quite different contexts since the one in [7] is expressed by representation-theoretic
means, whereas the one in [27] is purely combinatorial and arises from queuing theory
considerations.

Let us describe more precisely the content of the article. We start by defining the
Pitman transforms, which are the main object of study in this article. These transforms
operate on the set of continuous functions π : [0, T ] → V with values in some real
vector space V such that π(0) = 0. They are given by the formula

Pαπ(t) = π(t) − inf
t≥s≥0

α∨(
π(s)

)
α, t ∈ [0, T ].

Here α ∈ V and α∨ ∈ V ∨ (where V ∨ is the dual space of V ) satisfy α∨(α) = 2. These
are multidimensional generalizations of the transform occurring in Pitman’s theorem.
They are related to Littelmann’s operators, as shown in Section 2.2. We show that
these transforms satisfy braid relations; that is, if α, β ∈ V and α∨, β∨ ∈ V ∨ are such
that α∨(α) = β∨(β) = 2, α∨(β) < 0, β∨(α) < 0, and α∨(β)β∨(α) = 4 cos2(π/n),
where n ≥ 2 is some integer, then one has

PαPβPα · · · = PβPαPβ · · · ,

where there are n factors in each product. Consider now a Coxeter system (W, S) (see
[8], [18]). To each fundamental reflection si we associate a Pitman transform Pαi

. The
braid relations imply that if w ∈ W has a reduced decomposition w = s1 · · · sn, then
the operator Pw = Pα1 · · · Pαn

is well defined; that is, it depends only on w and not
on the reduced decomposition. We show that if W is a Weyl group, w0 ∈ W is the
longest element, and if π is a dominant path ending in the weight lattice, then for any
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path η in the Littelmann module generated by π , one has

π = Pw0η. (1.1)

The path transformation introduced in [27] can be expressed as Pw0 , where w0 is the
longest element in the Coxeter group of type A.

We derive a representation-theoretic formula for Pw, in the case of a Weyl group,
expressed in terms of representations of the Langlands dual group (see Theorem 3.12).
This formula is canonical in the sense that it is independent of any choice of a reduced
decomposition of w in the Weyl group. It is obtained by lifting the path to a path
g(t) with values in the Borel subgroup of the simply connected complex Lie group
associated with the root system. Then one obtains integral transformations, which
relate the diagonal parts in the Gauss decompositions of the elements wg(t). The
Pitman transforms are obtained by going down to the Cartan algebra by applying the
Laplace method. By (1.1), we obtain in this way a new formula for the dominant
path in some Littelmann module, in terms of any of the paths of the module, which
is a generalization to arbitrary root systems of Greene’s formula (see [14]). As a
by-product of this formula, we also obtain a direct proof of the symmetry of the
Littlewood-Richardson coefficients.

This formula appeared in [7], where it was conjectured that the associated map
transforms a Brownian motion in the Cartan Lie algebra into a Brownian motion in
the Weyl chamber. This conjecture was proved in [7] for some classical groups. Here
we give a completely different proof, valid for all root systems.

This article is organized as follows. In Section 2, we define the elementary Pitman
transformations operating on continuous paths with values in some real vector space V ,
taking the value zero at zero. The first result is a formula for the repeated compositions
of two Pitman transforms which implies that they satisfy the braid relations. Then we
define Pitman transformations Pw associated to a Coxeter system (W,S). In Section
3, we prove our main result, which is a representation-theoretic formula for these
operators Pw in the case where W is a Weyl group. This formula unifies the results
of [27] and [7]. Results of Berenstein and Zelevinsky [2] and Fomin and Zelevinsky
[13] on totally positive matrices play a crucial role in the proof. In Section 4, we
make some comments on a duality transformation naturally defined on paths, which
generalizes the Schützenberger involution, and give an application to the symmetry of
the Littlewood-Richardson rule. In Section 5, we give two proofs of the generalization
of the representation of Brownian motion in a Weyl chamber obtained in [27] and
[7]. One of the proofs relies essentially on the duality properties, while the other uses
Littelmann paths in the context of Weyl groups. Finally, we come to the appendix, to
which we have postponed a technical proof.
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2. Braid relations for the Pitman transforms

2.1. Pitman transforms
Let V be a real vector space with dual space V ∨. Let α ∈ V and α∨ ∈ V ∨ be such
that α∨(α) = 2.

Definition 2.1
The Pitman transform Pα is defined on the set of continuous paths π : [0, T ] → V ,
satisfying π(0) = 0, by the formula

Pαπ(t) = π(t) − inf
t≥s≥0

α∨(
π(s)

)
α, T ≥ t ≥ 0.

This transformation seems to have appeared for the first time in [28] in the one-
dimensional case. Note that Pα actually depends on the pair (α, α∨). For simplicity,
we use the notation Pα; it is always clear from the context which α∨ is involved.

When, for some v ∈ V , π is the linear path π(t) = tv, then Pαπ = π when
α∨(v) ≥ 0 and Pαπ = sαπ when α∨(v) ≤ 0, where sα is the reflection on V :

sαv = v − α∨(v)α. (2.1)

PROPOSITION 2.2
The Pitman transforms satisfy the following properties.
(i) For any λ > 0, the Pitman transformation associated with the pair (λα, α∨/λ)

is the same as the one associated with the pair (α, α∨).
(ii) One has α∨(Pαπ(t)) ≥ 0 for all t ∈ [0, T ]. Furthermore, Pαπ = π if and

only if α∨(π(t)) ≥ 0 for all t ∈ [0, T ].
(iii) The transformation Pα is an idempotent; that is, PαPαπ = Pαπ for all π .
(iv) Let π : [0, ∞[→ V be a path; then − inf0≤t≤T α∨(π(t)) ∈ [0, α∨(Pαπ(T ))].

Conversely, given a path η satisfying η(0) = 0, α∨(η(t)) ≥ 0 for all t ∈ [0, T ],
and x ∈ [0, α∨(η(T ))], there exists a unique path π such that Pαπ = η and
x = − infT ≥t≥0 α∨(π(t)). Actually, π is given by the formula

π(t) = η(t) − min
(
x, inf

T ≥s≥t
α∨(η(s))

)
α. (2.2)

Proof
Items (i) and (ii) are trivial, and (iii) follows immediately from (ii). Hopefully, the
reader can give a formal proof of (iv) (see the appendix for such a proof), but it is
perhaps more illuminating to stare for a few minutes at Figure 1, which shows, in the
one-dimensional case with α = 1, α∨ = 2, the graph of a function g : [0, 1] → R as
well as those of I, −I , and f = Pαg, where I (s) = inf0≤u≤s g(u). �
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2.2. Relation with Littelmann path operators
Using Proposition 2.2(iv), we can define generalized Littelmann transformations.
Recall that Littelmann operators are defined on paths with values in the dual space
a∗ of some real Lie algebra a. The image of a path is either another path or the
symbol 0 (actually the zero element in the Z-module generated by all paths). We
define continuous versions of these operators.

Definition 2.3
Let π : [0, T ] → V be a continuous path satisfying π(0) = 0, and let x ∈ R; then
Ex

απ is the unique path such that

PαEx
απ = Pαπ and α∨(

Ex
απ(T )

) = α∨(
π(T )

) + x

if −2α∨(π(T )) + 2 inf0≤t≤T α∨(π(t)) ≤ x ≤ −2 inf0≤t≤T α∨(π(t)) and Ex
απ = 0

otherwise.
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One easily checks that E0
απ = π and E

x
αE

y
απ = E

x+y
α π as long as E

y
απ �= 0. When

α is a root and α∨ its coroot in some root system, then E2
α and E−2

α coincide with the
Littelmann operators eα and fα defined in [22]. Recall that a path π is called integral
if its endpoint π(T ) is in the weight lattice and, for each simple root α, the minimum
of the function α∨(π(t)) is an integer. The class of integral paths is invariant under
the Littelmann operators. For such paths, the action of a Pitman transform can be
expressed through Littelmann operators by

Pαπ = enα

α (π), (2.3)

where nα is the largest integer n such that en
α(π) �= 0.

2.3. Braid relations
An important property of the Pitman transforms is the following result.

THEOREM 2.4
Let α, β ∈ V , and let α∨, β∨ ∈ V ∨ be such that α∨(α) = β∨(β) = 2, α∨(β) < 0,

β∨(α) < 0 α∨(β)β∨(α) = 4 cos2(π/n), where n ≥ 2 is some integer; then one has

PαPβPα · · · = PβPαPβ · · · ,

where there are n factors in each product.

We prove Theorem 2.4 as a corollary to the result of Section 2.4. Note that if α∨(β) =
β∨(α) = 0, then PαPβ = PβPα by a simple computation. For crystallographic
angles (i.e., n = 2, 3, 4, 6), a proof of Theorem 2.4 could also be deduced from
Littelmann’s theory (see [23] or [19]). We provide still another (and hopefully more
conceptual) proof for these angles in Section 3 (see Remark 3.10). The general case
seems to be new.

2.4. A formula for PαPβPαPβ · · ·
Let α, β ∈ V , and let α∨, β∨ ∈ V ∨ be such that α∨(β) < 0 and β∨(α) < 0.
By Proposition 2.2(i), we can—and do—assume by rescaling that α∨(β) = β∨(α)
without changing Pα and Pβ . We use the notation

ρ = −1

2
α∨(β) = −1

2
β∨(α), X(s) = α∨(

π(s)
)
, Y (s) = β∨(

π(s)
)
.
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THEOREM 2.5
Let n be a positive integer; if ρ ≥ cos(π/n), then one has

(PαPβPα · · ·︸ ︷︷ ︸
n terms

)π(t) = π(t) − inf
t≥s0≥s1≥···≥sn−1≥0

( n−1∑
i=0

Ti(ρ)Z(i)(si)
)
α

− inf
t≥s0≥s1≥···≥sn−2≥0

( n−2∑
i=0

Ti(ρ)Z(i+1)(si)
)
β, (2.4)

where Z(k) = X if k is even and Z(k) = Y if k is odd. The Tk(x) are the Tchebycheff
polynomials defined by T0(x) = 1, T1(x) = 2x, and 2xTk(x) = Tk−1(x) + Tk+1(x) for
k ≥ 1.

The Tchebycheff polynomials satisfy Tk(cos θ) = (sin(k + 1)θ )/sin θ ; and, in partic-
ular, under the assumptions on ρ and n, one has Tk(ρ) ≥ 0 for all k ≤ n − 1.

Assuming Theorem 2.5, we obtain Theorem 2.4.

Proof of Theorem 2.4
Let α∨(β) = β∨(α) = −2 cos(π/n); then one has Tn−1(ρ) = 0, and the last term in the
coefficient of α in the right-hand side of (2.4) vanishes. It follows by inspection that
this term equals the coefficient of α in the analogous formula for PβPαPβ · · ·︸ ︷︷ ︸

n terms

π(t).

A similar argument works for the coefficient of β. �

The proof of Theorem 2.5 is by induction on n. It is easy to check the formula for
n = 1 or 2. We do the induction in Sections 2.5 and 2.6.

See Figure 2 for a picture of the case ρ = 1/2.

2.5. Two intermediate lemmas
LEMMA 2.6
Let X : [0, t] → R be a continuous function with X(0) = 0, and let

t0 = sup{s ≥ 0 | Xs = inf
s≥u≥0

Xu}.

Then for all u ≤ t0, one has

inf
t≥s≥u

(
X(s) − 2 inf

s≥w≥0
X(w)

) = − inf
u≥v≥0

X(v).

Proof
This is obtained as a by-product of the proof in Section 6. Again, it is perhaps more
convincing to stare at Figure 1 than to give a formal proof. �

Elaborating on this, we obtain the next result.
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LEMMA 2.7
Let X and Y be continuous functions such that X(0) = Y (0) = 0; then

inf
t≥s≥0

(
X(s) + inf

s≥u≥0
Y (u)

)
= inf

t≥s≥0
X(s) + inf

t≥s≥0

(
X(s) − 2 inf

s≥u≥0
X(u) + inf

s≥u≥0
(Y (u) + inf

u≥v≥0
X(v))

)
.

Proof
The first term is I = inft≥s≥u≥0(X(s) + Y (u)). Let t0 be, as in Lemma 2.6, the last
time when X reaches its minimum over [0, t]; then

I = inf
(

inf
t0≥u≥0

(Y (u) + X(t0)); inf
t≥s≥u≥t0≥0

(Y (u) + X(s))
)
.

Let J be the second term in the identity to be proved; then

J = inf
t≥s≥0

[
X(s) − 2 inf

s≥u≥0
X(u) + inf

s≥u≥0
(Y (u) + inf

u≥v≥0
X(v))

] + X(t0).

Introduce again the time t0; then

J = inf
t≥s≥u≥0

(
X(s) − 2 inf

s≥w≥0
X(w) + Y (u) + inf

u≥v≥0
X(v)

) + X(t0)

= inf
(

inf
t≥s≥u≥0

t0≥u

(Y (u) + X(s) − 2 inf
s≥w≥0

X(w) + inf
u≥v≥0

X(v) + X(t0));

inf
t≥s≥u≥t0

(Y (u) + X(s) − 2 inf
s≥w≥0

X(w) + inf
u≥v≥0

X(v) + X(t0))
)
.

But if u ≤ t0, then by Lemma 2.6, one has inft≥s≥u(X(s) − 2 infs≥w≥0 X(w)) =
− infu≥v≥0 X(v). If t0 ≤ u, then infs≥w≥0 X(w) = X(t0); therefore

J = inf
(

inf
t0≥u≥0

(Y (u) + X(t0)); inf
0≥u≥t0

(Y (u) + inf
t≥s≥u

X(s))
)

= inf
(

inf
t0≥u≥0

(Y (u) + X(t0)); inf
t≥s≥u≥t0≥0

(Y (u) + X(s))
)

= I. �

2.6. Proof of Theorem 2.5
Assume that the result of the theorem holds for some n with n even. Then

PαPβPα · · ·︸ ︷︷ ︸
n + 1 terms

= PαPβPα · · ·︸ ︷︷ ︸
n terms

Pα,

and one has

α∨(
Pαπ(s)

) = X(s) − 2 inf
s≥u≥0

X(u),

β∨(
Pαπ(s)

) = Y (s) + 2ρ inf
s≥u≥0

X(u).
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Therefore, by the induction hypothesis,

PαPβPα · · ·︸ ︷︷ ︸
n + 1 terms

π(t) = PαPβPα · · ·︸ ︷︷ ︸
n terms

(Pαπ)(t)

= π(t) − inf
t≥s≥0

X(s)α − inf
t≥s0≥s1≥···≥sn−1≥0

( n−1∑
i=0

Ti(ρ)Ẑ(i)(si)
)
α

− inf
t≥s0≥s1≥···≥sn−2≥0

( n−2∑
i=0

Ti(ρ)Ẑ(i+1)(si)
)
β,

where

Ẑ(i)
α (s) =

{
X(s) − 2 infs≥u≥0 X(u) for i even,

Y (s) + 2ρ infs≥u≥0 X(u) for i odd.

The coefficient of α in the above expression has the form

Hα = − inf
t≥s≥0

T0(ρ)X(s)

− inf
t≥s≥0

(
T0(ρ)X(s) − 2 inf

s≥u≥0
T0(ρ)X(u) + inf

s≥u≥0
(�(u) + inf

u≥v≥0
T0(ρ)X(v))

)
,

where

�(u) = T1(ρ)Y (u) + 2ρT1(ρ) inf
u≥v≥0

X(v)

+ inf
u≥u2≥u3≥···≥un−1≥0

( n−1∑
i=2

Ti(ρ)Ẑ(i)(ui)
)

− T0(ρ) inf
u≥v≥0

X(v)

= T1(ρ)Y (u) + T2(ρ) inf
u≥v≥0

X(v) + inf
u≥u2≥u3≥···≥un−1≥0

( n−1∑
i=2

Ti(ρ)Ẑ(i)
)
,

so that we can apply Lemma 2.7 to transform it into

Hα = − inf
t≥s≥0

(
T0(ρ)X(s) + inf

s≥u≥0
�(u)

)
.

Let us prove by induction on k that

Hα = − inf
t≥u0≥u1≥···≥u2k

( 2k∑
i=0

Ti(ρ)Z(i)(ui) + Wk(u2k−1)
)

with

Wk(v) = inf
v≥u2k≥u2k+1≥···≥un−1≥0

( n−1∑
i=2k

Ti(ρ)Ẑ(i)(ui)
)
.
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Indeed, the formula holds for k = 1 by the computation above. Assume that this holds
for some k; then one has

Hα = − inf
t≥u0≥u1≥···≥u2k

( 2k∑
i=0

Ti(ρ)Z(i)(ui) + Wk(u2k−1)
)

= − inf
t≥u1≥u2≥···≥u2k−1

( 2k−1∑
i=0

Ti(ρ)Z(i)(ui) + inf
u2k−1≥v≥0

T2k(ρ)X(v)

+ u2k−1≥v≥0
(
(T2k(ρ)X(v) − 2 inf

v≥w≥0
T2k(ρ)X(w))

+ inf
w≥z≥0

(Rk(z) + inf
z≥τ≥0

T2k(ρ)X(τ ))
))

,

where

Rk(z) = T2k+1(ρ)Y (z) + 2ρT2k+1(ρ) inf
z≥τ≥0

X(τ )

+ inf
z≥u2k+2≥···un−1

( n−1∑
i=2k+2

Ẑ(i)(ui)
)

− inf
z≥τ≥0

T2k(ρ)X(τ )

= T2k+1(ρ)Y (z) + T2k+2(ρ) inf
z≥τ≥0

X(τ ) + inf
z≥u2k+2≥···un−1

( n−1∑
i=2k+2

Ẑ(i)(ui)
)
,

where we used 2ρT2k+1(ρ) − T2k(ρ) = T2k+2(ρ). Applying Lemma 2.7, we get

Hα = − inf
t≥u1≥u2≥···≥u2k−1

( 2k−1∑
i=0

Ti(ρ)Z(i)(ui) + inf
u2k−1≥v≥0

(
T2k(ρ)X(v) + inf

w≥z≥0
Rk(z)

))

= − inf
t≥u0≥u1≥···≥u2k+2

( 2k+2∑
i=0

Ti(ρ)Z(i)(ui) + Wk+1(u2k+1)
)
.

Taking k = n gives the required formula for Hα . For the coefficient of β, note that

PαPβPα · · ·︸ ︷︷ ︸
n + 1 terms

π(t) = Pα(PβPαPβ · · ·︸ ︷︷ ︸
n terms

π)(t)

and that the formula for n + 1 follows immediately from the formula at step n for
PβPαPβ · · ·︸ ︷︷ ︸

n terms

. The case where n is odd is treated in a similar way. �

2.7. Pitman transformations for Coxeter and Weyl groups
Let W be a Coxeter group; that is, W is generated by a finite set S of reflections of
a real vector space V and (W, S) is a Coxeter system (see [8], [18]). For each s ∈ S,
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let αs ∈ V , and let α∨
s ∈ V ∨, where V ∨ is the dual space of V such that s = sαs

is
the reflection associated to αs (see (2.1)). Then αs is called the simple root associated
with s ∈ S and α∨

s is called its coroot.
Denote by Ps the Pitman transform associated with the pair (αs, α

∨
s ). By the

results of the preceding sections, the Ps , s ∈ S, form a representation of the monoid
generated by idempotents satisfying the braid relations. Such a monoid occurs in the
theory of Hecke algebras for q = 0 and in the calculus of Borel orbits (see, e.g., [20],
where this monoid is called the Richardson-Springer monoid).

Let Hs be the closed half-space Hs = {v ∈ V |α∨
s (v) ≥ 0}. Let w ∈ W , and

let w = s1 · · · sl be a reduced decomposition of w, where l = l(w) is the length of
w. By Theorem 2.4 and a fundamental result of Matsumoto in [8, Ch. IV, No. 1.5,
Prop. 5], the operator Ps1 · · · Psl

depends only on w and not on the chosen reduced
decomposition. We denote this operator by Pw.

PROPOSITION 2.8
Let w ∈ W , let Lw = {s ∈ S | l(sw) < l(w)}, and let Rw = {s ∈ S | l(ws) < l(w)}.
For any path π , the path Pwπ lies in the convex cone

⋂
s∈Lw

Hs; one has PsPw = Pw

for all s ∈ Lw and PwPs = Pw for all s ∈ Rw.

Proof
If l(sw) < l(w), then w has a reduced decomposition w = ss1 · · · sk; therefore
Pw = PsPs1 · · · Psk

and Pwπ = Ps(Ps1 · · · Psk
π) lies in Hs by Proposition 2.2(ii).

Furthermore, one has PsPw = Pw since Ps is an involution (see Proposition 2.2(ii)).
Similarly, PwPs = Pw when l(ws) < l(w). �

COROLLARY 2.9
If W is finite and w0 is the longest element, then Pw0π takes values in the closed
Weyl chamber C = ⋂

s∈S Hs . Furthermore, Pw0 is an idempotent and PwPw0 =
Pw0 Pw = Pw0 for all w ∈ W .

Assume now that W is a finite Weyl group associated with a weight lattice in V . Recall
that paths taking values in the Weyl chamber C are called dominant paths in [22] and
that the set Bπ of all (nonzero) paths obtained by applying products of Littelmann
operators to a dominant path π is called the Littelmann module. From the connection
between Pitman’s and Littelmann’s operators given in Section 2.2, we deduce the
following (see also [23]).

COROLLARY 2.10
Let π be a dominant integral path; then a path η belongs to the Littelmann module
Bπ if and only if η is integral and π = Pw0η.
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Proof
Indeed, for any path η and x such that Ex

αη �= 0, one has PαEx
αη = Pαη; therefore

Pw0E
x
αη = Pw0 PαEx

αη = Pw0η. It follows that the set of paths whose image by
Pw0 is π is stable under the action of Littelmann operators. If η is an integral path
such that Pw0η = π and w0 = s1 · · · sn is a reduced decomposition, then by Section
2.2, the sequence η, Pαn

η, Pαn−1 Pαn
η, . . . , π is obtained by successive applications

of Littelmann operators; therefore they all belong to the Littelmann module Bπ . �

Let us come back to the general case of a finite Coxeter group. We now study the set
of all paths η such that Pwη is a given dominant path. Let w = s1 · · · sq be a reduced
decomposition. Let η be a path such that η(0) = 0 and π = Pwη is a dominant
path. Denote η0 = π , ηq = η, and ηj = Psj+1 · · · Psq

ηq for j = 1, 2, . . . , q − 1.
Then by Proposition 2.2(iv) for all j = 1, 2, . . . , q, the path ηj is uniquely specified
among paths γ such that Psj

γ = ηj−1 by the number xj = − inf0≤t≤T α∨
sj

(ηj (t)) ∈
[0, α∨

sj
(ηj−1(T ))]. It follows that η = ηq is uniquely specified among all paths γ such

that Pw0γ = π by the sequence x1, x2, . . . , xq . These coordinates are subject to the
inequalities 0 ≤ xj ≤ α∨

sj
(ηj−1(T )). From

ηj−1(T ) = ηj (T ) + xjαsj
,

one obtains

π(T ) = η0(T ) = ηj (T ) +
j∑

l=1

xlαsl
.

Therefore the inequality 0 ≤ xj ≤ α∨
sj

(ηj−1(T )) reads

0 ≤ xj ≤ α∨
sj

(
π(T )

) −
j−1∑
l=1

xlα
∨
sj

(αsl
).

It follows that the set of all paths η such that Pwη = π can be parametrized by a
subset of the convex polytope

Kπ =
{

(x1, . . . , xq) ∈ R
q
∣∣∣ 0 ≤ xj ≤ α∨

sj

(
π(T )

) −
j−1∑
l=1

xlα
∨
sj

(αsl
); j = 1, . . . , q

}
.

The path η corresponding to the point (x1, . . . , xq) is specified by the equalities

ηj−1(T ) = ηj (T ) + xjαsj
,

where ηj = Psj+1 · · · Psq
η. In the case of a Weyl group, it follows from [23] that

the subset of Kπ corresponding to paths η such that Pwη = π is the intersection of
Kπ with a certain convex cone that does not depend on π . This convex cone is quite
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difficult to describe (see [3]). Also, we do not know if a similar result holds for all
finite Coxeter groups. We hope to come back to these questions in future work.

3. A representation-theoretic formula for Pw

3.1. Semisimple groups
We recall some standard terminology. We consider a simply connected complex
semisimple Lie group G associated with a root system R. Let H be a maximal torus,
and let B+, B− be corresponding opposite Borel subgroups with unipotent radicals
N+, N−. Let αi, i ∈ I, and α∨

i , i ∈ I, be the simple positive roots and coroots, and
let si be the corresponding reflections in the Weyl group W . Let ei, fi, hi, i ∈ I,

be Chevalley generators of the Lie algebra of G. One can choose representatives
w ∈ G for w ∈ W by putting si = exp(−ei) exp(fi) exp(−ei) and vw = v w if
l(v) + l(w) = l(vw) (see [13, Sec. 1.4]). The Lie algebra of H , denoted by h, has a
Cartan decomposition h = a + ia such that the roots αi take real values on the real
vector space a. Thus a is generated by α∨

i , i ∈ I , and its dual, a∗, is generated by
αi, i ∈ I . The set of weights is the lattice P = {λ ∈ a∗; λ(α∨

i ) ∈ Z, i ∈ I }, and the set
of dominant weights is P + = {λ ∈ a∗; λ(α∨

i ) ∈ N, i ∈ I }. For each λ ∈ P +, choose a
representation space Vλ with a highest weight vector vλ and an invariant inner product
on Vλ for which vλ is a unit vector.

LEMMA 3.1
For any dominant weight λ, w ∈ W and indices i1, . . . , in ∈ I, one has

〈ei1 · · · einwvλ, vλ〉 ≥ 0.

Proof
This is an immediate consequence of [3, Lem. 7.4]. �

Let (ωi, i ∈ I ) ∈ P I be the fundamental weights characterized by the relations
ωi(α∨

j ) = δi,j , j ∈ I . The principal minor associated with ωi is the function on G

given by


ωi (g) = 〈gvωi
, vωi

〉

(see [2] and [13]). If g ∈ G has a Gauss decomposition g = [g]−[g]0[g]+ with
[g]− ∈ N−, [g]0 ∈ H, and [g]+ ∈ N+, then one has


ωi (g) = [g]ωi

0 = eωi (log[g]0). (3.1)

3.2. Some auxiliary path transformations
We now introduce some path transformations.
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Definition 3.2
Let ni : [0, T ] → R

+, i ∈ I , be a family of strictly positive continuous functions, and
let a : (0, T ] → a be a continuous map such that∫

0+
e−αi (a(s))ni(s) ds < ∞.

We define, for 0 < t ≤ T ,

Ti,na(t) = a(t) + log
( ∫ t

0
e−αi (a(s))ni(s) ds

)
α∨

i .

Observe that, in general, the maps t �→ a(t) and t �→ Ti,na(t) need not be continuous
at zero. For all that follows, consideration of the case ni ≡ 1 in Definition 3.2 would
be sufficient for our purposes, but the proofs would be the same as the general case.

Let R∨ be the root system dual to R; namely, let the roots of R∨ be the coroots of
R and vice versa, and denote by Pα∨

i
, i ∈ I, the corresponding Pitman transformations

on a. Let π be a continuous path in a with π(0) = 0. For ε > 0, let Dε be the dilation
operator Dεπ(t) = επ(t). A simple application of the Laplace method yields

Pα∨
i
π = lim

ε→0
DεTi,nD

−1
ε π. (3.2)

We establish, in Section 3.4, a representation-theoretic formula for a product
Tik ,n · · · Ti1,n corresponding to a minimal decomposition w = si1 · · · sik in the Weyl
group. Using this formula, we use (3.2) to get a formula for the Pitman transform.

3.3. A group-theoretic interpretation of the operators Ti,n

Let a be a smooth path in a, and let b be the path in the Borel subgroup B+ = HN+

solution to the differential equation

d

dt
b(t) =

( d

dt
a(t) +

∑
i∈I

ni(t)ei

)
b(t), b(0) = id.

The following expression is easy to check.

LEMMA 3.3
We have

b(t) = ea(t) + ea(t)
∑
k≥1

∑
i1,...,ik∈I k

( ∫
t≥t1≥t2≥···≥tk≥0

e−αi1 (a(t1))ni1 (t1)

· · · e−αik
(a(tk))nik (tk) dt1 · · · dtk

)
ei1 · · · eik . (3.3)
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Observe that this expression is well defined in each finite-dimensional representation
of G since the operators ei are nilpotent and this sum has only a finite number of
nonzero terms. It is always in this context that we use this formula.

LEMMA 3.4
For any t > 0 and w ∈ W, one has


ωi
(
b(t)w

)
> 0.

Proof
By equation (3.3), one has


ωi
(
b(t)w

) = 〈ea(t)wvωi
, vωi

〉

+
∑
r≥1

∑
i1,...,ir∈I r

∫
t≥t1≥t2≥···≥tr≥0

〈ea(t)e−αi1 (a(t1))ni1 (t1) · · ·

· · · e−αir (a(tr ))nir (tr )ei1 · · · eir wvωi
, vωi

〉 dt1 · · · dtr , (3.4)

which is a sum of nonnegative terms, by Lemma 3.1. Furthermore, since vωi
is a

highest weight vector, there exists some sequence i1, . . . , ir such that ei1 · · · eir wvωi

is a nonzero multiple of vωi
and the ni do not vanish; therefore the sum is

positive. �

It follows in particular that, according to the terminology of [13], b(t) belongs to
the double Bruhat cell B+ ∩ B−w0B− and that b(t)w has a Gauss decomposition
b(t)w = [b(t)w]−[b(t)w]0[b(t)w]+ for all t > 0.

Now comes the main result of this section.

THEOREM 3.5
Let w ∈ W, and let w = si1 · · · sik be a reduced decomposition; then the H -part in
the Gauss decomposition of b(t)w is equal to

exp
(
Tik,n · · · Ti1,na(t)

)
.

The fact that the path Tik,n · · · Ti1,na(t) is well defined is part of the theorem. By the
uniqueness of the Gauss decomposition, the preceding result implies the following
corollary.

COROLLARY 3.6
The path

Tik ,n · · · Ti1,na(t)

depends only on w and n and not on the chosen reduced decomposition of w.
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We denote by Twa the resulting path. (It depends on n.) We thus have

[b(t)w]0 = eTwa(t). (3.5)

Proof of Theorem 3.5
The proof is by induction on the length of w. Let si be such that l(wsi) = l(w)+1. We
assume that the H -part of the Gauss decomposition of b(t)w is Tik ,n · · · Ti1,na(t), as
required. By (3.1), it is then enough to prove that for all t > 0 and i, j ∈ I , one has


ωj
(
b(t)wsi

) = 
ωi
(
b(t)w

)
if i �= j and


ωi
(
b(t)wsi

) = 
ωi
(
b(t)w

) ∫ t

0
e−αi (Twa(s))ni(s) ds.

The claim for i �= j follows from [13, Prop. 2.3]. It remains to check the case i = j .

LEMMA 3.7
We have


ωi (b(t)wsi)


ωi (b(t)w)
→t→0 0.

Proof
From the decomposition (3.4), the fact that all terms are positive, and the fact that the
ni are positive continuous functions, we see that as t → 0, one has 
ωi (b(t)w) ∼ c1t

l1

and 
ωi (b(t)wsi) ∼ c2t
l2 for some c1, c2 > 0, where l1 (resp., l2) is the number of

terms in the decomposition of ωi − w(ωi) (resp., ωi − wsi(ωi)) as a sum of simple
roots. Since l(wsi) > l(w), the weight w(ωi) − wsi(ωi) is positive, and one has
l2 > l1. �

LEMMA 3.8
Let w = si1 · · · sik be a reduced decomposition, and let bw(t) = [b(t)w]0[b(t)w]+.
Then one has

d

dt
bw(t) =

( d

dt
Tik ,n · · · Ti1,na(t) +

∑
j∈I

nj (t)ej

)
bw(t).

Proof
We do this by induction on the length of w. Assume that this is true for w, and let si

be such that l(wsi) = l(w) + 1. Then one has

d

dt
bw(t) =

( d

dt
Twa(t) +

∑
j

nj ej

)
bw(t).
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Therefore

d

dt
bw(t)si =

( d

dt
Twa(t) +

∑
j

nj (t)ej

)
bw(t)si .

Since bw(t) ∈ B+, by [2] and [13], the Gauss decomposition of bw(t)si has the
form

bw(t)si = exp
(
β(t)fi

)
bwsi (t)

with β(t) > 0 for t > 0, and one has, since fi commutes with all ej for j �= i,

d

dt
bwsi (t) = d

dt

[
exp(−β(t)fi)b

w(t)si

]

= −
( d

dt
β(t)

)
fi exp

( − β(t)fi

)
bw(t)si

+ exp
( − β(t)fi

)( d

dt
Twa(t) +

∑
j

nj (t)ej

)
bw(t) si

= − d

dt
β(t)fib

wsi (t)

+
( d

dt
Twa(t) +

∑
j

nj (t)ej + ni(t)β(t)hi + ni(t)β
2(t)fi

)
bwsi (t)

=
[( d

dt
β(t) + d

dt
αi(Twa(t)) + ni(t)β

2(t)
)
fi

+ d

dt
Twa(t) + ni(t)β(t)hi +

∑
j

nj (t)ej

]
bwsi (t).

Since bwsi (t) ∈ B+, one has d
dt

β(t) + d
dt

αi(Twa(t)) + β2(t) = 0. Therefore

β(t) = e−αi (Twa(t))

C + ∫ t

0 e−αi (Twa(s))ni(s) ds

for some constant C ≥ 0. Integrating the H part of the Gauss decomposition of bwsi (t),
we see that this part is equal to

exp
(
Twa(t)

)
exp

(
C ′ + log

(
C +

∫ t

0
e−αi (Twa(s))ni(s) ds

))
hi. (3.6)
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Therefore


ωi (b(t)wsi)


ωi (b(t)w)
= exp(C ′)

(
C +

∫ t

0
e−αi (Twa(s))ni(s) ds

)

and C = 0, by Lemma 3.7. We conclude that

β(t) = e−αi (Twa(t))∫ t

0 e−αi (Twa(s))ni(s) ds
.

This implies that

d

dt
bwsi (t) =

[ d

dt
Twa(t) + ni(t)

e−αi (Twa(t))∫ t

0 e−αi (Twa(s))ni(s) ds
hi +

∑
j

nj (t)ej

]
bwsi (t)

=
[ d

dt
Ti,nTwa(t) +

∑
j

nj (t)ej

]
bwsi (t),

as required. �

From (3.6), we obtain


ωi (b(t)wsi)


ωi (b(t)w)
= 
ωi

(
e−Twa(t)bw(t)si

) = exp(C ′)
∫ t

0
e−αi (Twa(s))ni(s) ds.

Differentiating with respect to t , we get

d

dt
e−Twa(t)bw(t)si = e−Twa(t)

∑
j

nj (t)ej e
Twa(t)e−Twa(t)bw(t)si

=
(∑

i

e−αj (Twa(t))nj (t)ej

)
e−Twa(t)bw(t)si,

where e−Twa(t)bw(t) ∈ N . It follows that

d

dt

{
ωi (b(t)wsi)


ωi (b(t)w)

}
=

〈(∑
j

e−αj (Twa(t))nj (t)ej

)
e−Twa(t)bw(t)sivωi

, vωi

〉

= e−αi (Twa(t))ni(t)〈eisivωi
, vωi

〉
= e−αi (Twa(t))ni(t).

Therefore C ′ = 0. This proves the claim for i = j and finishes the proof of Theo-
rem 3.5. �
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COROLLARY 3.9
The transformations Ti,n satisfy the braid relations

Ti,nTj,n · · ·︸ ︷︷ ︸
m(i, j ) terms

= Tj,nTi,n · · ·︸ ︷︷ ︸
m(i, j ) terms

,

where m(i, j ) is the Cartan integer αi(α∨
j ).

Remark 3.10
In the case of rank-two groups, the braid relations of Corollary 3.9 and an application
of the Laplace method yield the braid relations for Pitman operators, as in Theo-
rem 2.4, in the case of cristallographic angles π/m, m = 2, 3, 4, 6. It is instructive
to give an elementary derivation of the braid relations for the Ti,n in the simplest
nontrivial case, namely, type A2 (i.e., m = 3). In this case, the relations amount to

∫ t

0
ds

∫ s

0
dr F (r)

G(s)

G(r)

H (t)

H (s)
=

∫ t

0
ds

∫ s

0
dr F (r)

G̃(s)

G̃(r)

H̃ (t)

H̃ (s)
(3.7)

for some positive continuous functions F, G,H , where

G̃(s) =
( ∫ s

0
G(r)H (r)−1 dr

)−1
G(s)

and

H̃ (s) =
( ∫ s

0
G(r)H (r)−1 dr

)
H (s).

This can be checked directly by an application of Fubini’s theorem or by an in-
tegration by parts. Similar but more complicated formulas correspond to the other
crystallographic angles π/4 and π/6.

From (3.7), one recovers, by the Laplace method, the identity

x � (z � y) � (y � z) = (x � y) � z (3.8)

for continuous functions x, y, z with x(0) = y(0) = z(0) = 0 and (nonassociative)
binary operations � and � defined by

(x � y)(t) = inf
0≤s≤t

[x(s) − y(s) + y(t)], (3.9)

(x � y)(t) = sup
0≤s≤t

[x(s) − y(s) + y(t)]. (3.10)
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This is equivalent to the n = 3 braid relation for the Pitman transforms. For a queuing-
theoretic proof, which some readers might find illuminating, see [25]. Lemma 2.7 is
a special case.

3.4. Representation-theoretic formula for Pw

Let w ∈ W , and let λ be a dominant weight; then λ−wλ can be decomposed as a linear
combination of simple positive roots λ − wλ = ∑

i∈I uiαi , where ui are nonnegative
integers. If (j1, . . . , jr ) ∈ I r is a sequence such that 〈ej1 · · · ejr

wvλ, vλ〉 �= 0, then the
number of k’s in the sequence j1, . . . , jr is equal to uk . In particular, the number r

depends only on w and λ. We let S(λ,w) denote the set of sequences (j1, . . . , jr ) ∈ I r

such that 〈ej1 · · · ejr
wvλ, vλ〉 �= 0. Using (3.4) and (3.5), we obtain the following

expression.

PROPOSITION 3.11
Let a be a path in a, and let λ be a dominant weight; then one has

〈eTwa(t)vλ, vλ〉 = eλ(a(t))
∑

(j1,...,jr )∈S(λ,w)

∫
t≥t1≥···≥tr≥0

e−αj1 (a(t1))−···−αjr (a(tr ))nj1 (t1)

· · · njr
(tr ) dt1 · · · dtr〈ej1 · · · ejr

wvλ, vλ〉.

Let w ∈ W , and let P∨
w denote the Pitman transformation on a for the dual root system

R∨. By (3.2), one has

P∨
wπ = lim

ε→0
DεTwD−1

ε π.

Using the Laplace method, Lemma 3.1, and Proposition 3.11 applied to fundamental
weights, we now obtain the following expression for the Pitman transform. (Notice
that W acts on a∗ and a by duality.)

THEOREM 3.12 (Representation-theoretic formula for the Pitman transforms)
Let w ∈ W . For each path π on a, one has

P∨
wπ(t) = π(t) −

∑
i∈I

inf
j1,...,jr∈S(ωi,w)
t≥t1≥t2···≥tr≥0

(
αj1 (π(t1)) + · · · + αjr

(π(tr ))
)
α∨

i . (3.11)

This formula can be seen as a generalization of the formula in Theorem 2.5. Observe
that sequences j1, . . . , jr , such as the ones occurring in the theorem, have appeared
already in [3] under the name of “i-trails.” It is interesting to note that such sequences
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appear here naturally by an application of the Laplace method (sometimes called
tropicalization in the algebraic literature).

By Corollary 2.10, we see that Theorem 3.12 provides a representation-theoretic
formula for the dominant path in some Littelmann module which is independent of
any choice of a reduced decomposition of w0.

Remark 3.13
As noted before, formula (3.11) has a structure similar to formula (2.4) (when ρ =
cos(π/n)). We conjecture that such formulas exist for arbitrary Coxeter groups; that
is, for w ∈ W , there exists r and sets S(s, w) ⊂ Sr such that

Pwπ(t) = π(t) −
∑
s∈S

inf
s1,...,sr∈S(s,w)
t≥t1≥t2···≥tr≥0

(
α∨

s1
(π(t1)) + · · · + α∨

sr
(π(tr ))

)
αs. (3.12)

However, we do not know how to interpret these sets S(s, w).

4. Duality

4.1. An involution on dominant paths
As in Section 2.7, we consider a Coxeter system (W, S) generated by a set S of
reflections of V . We assume now that the group W is finite, and we let w0 be the
longest element. We fix some T > 0; and for any continuous path π : [0, T ] → V

such that π(0) = 0, we let

κπ(t) = π(T − t) − π(T ).

Clearly, for all paths, κ2π = π . We show that the transformation I = Pw0κ(−w0)
is an involution on the set of dominant paths which generalizes the Schützenberger
involution (see Section 4.5 for the connection).

4.2. Codominant paths and co-Pitman operators
A path π is called α-dominant if α∨(π(t)) ≥ 0 for all t . It is called α-codominant
if κπ is α-dominant or, in other words, if α∨(π(t)) ≥ α∨(π(T )) for all t . Finally,
it is called codominant if it is α-codominant for all α. Let us define the co-Pitman
operators Eα = κPακ , which are given by the formula

Eαπ(t) = π(t) − inf
t≤s≤T

α∨(
π(s)

)
α + inf

0≤s≤T
α∨(

π(s)
)
α.

One checks the following:

PακPα = Pα, E2
α = Eα, EαPα = Eα, PαEα = Pα.
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Furthermore, for all paths π , one has

Eαπ(T ) = sαPαπ(T ).

The proof of the following lemma is left to the reader.

LEMMA 4.1
The transformations Eα satisfy the following properties.
(i) Eαπ is the unique path η satisfying η(T ) = sαPαπ(T ) and Pαη = Pαπ .
(ii) Eαπ is the unique path η such that Pαη = Pαπ and that η is α-codominant.
(iii) If π is α-dominant, then Eαπ is the unique path such that Pαη = π and

η(T ) = sα(π(T )).
(iv) Eαπ = π if and only if π is α-codominant.

The transformations Eα play the same role with respect to the Littelmann operators
fα as the transformations Pα do with respect to eα (see (2.3)).

LEMMA 4.2
The Eα satisfy the braid relations.

Proof
The proof follows from Eα = κPακ , κ2 = id, and the braid relations for the Pα . �

One can therefore define Ew for w ∈ W , and Ew0 = E2
w0

is a projection onto the set
of codominant paths. Furthermore, for all w ∈ W , one has

Ew = κPwκ.

In particular,

Ew0 = κPw0κ.

4.3. An endpoint property
In this section, we prove the following result, which is crucial for applications to
Brownian motion.

PROPOSITION 4.3
For any path π , one has

Ew0π(T ) = w0Pw0π(T ).

Since Pw0 Ew0 = Pw0 , it is enough to check this identity for π a codominant path (or
for a dominant path using Ew0 Pw0 = Ew0 ).

LEMMA 4.4
Let π be a codominant path, let w ∈ W , and let α be such that l(sαw) > l(w); then
Pwπ is α-codominant.
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Proof
First we check the result for dihedral groups. With the notation of Section 2.4, let π

be an α- and β-codominant path, and let n be such that ρ > cos(π/n); then one has
α∨(π(T )) ≤ α∨(π(t)) and β∨(π(T )) ≤ β∨(π(t)) for all t ≤ T . It follows that in the
computation of PβPαPβ · · ·︸ ︷︷ ︸

n terms

π(T ) using formula (2.4), the infimum is obtained for

s0 = s1 = · · · = T ; therefore (assuming n odd for definiteness)

α∨(
PβPαPβ · · ·π(T )

)
= α∨(

π(T )
) + 2ρ

[
β∨(π(T )) + T1(ρ)α∨(π(T )) + · · · + Tn−1(ρ)β∨(π(T ))

]
− 2

[
α∨(π(T )) + T1(ρ)β∨(π(T )) + · · · + Tn−2(ρ)β∨(π(T ))

]
= Tn−1(ρ)α∨(

π(T )
) + Tn(ρ)β∨(

π(T )
)
,

where we have used the recursion relation of the Tk . On the other hand, for t ≤ T ,
one has

α∨(
PβPαPβ . . . π(t)

)
= α∨(

π(t)
) + 2ρ inf

t≥s0≥···≥sn−1≥0

[
β∨(π(s0)) + T1(ρ)α∨(π(s1))

+ · · · + Tn−1(ρ)β∨(π(sn−1))
]

−2 inf
t≥s0≥···≥sn−2≥0

[
α∨(π(s0)) + T1(ρ)β∨(π(s1))

+ · · · + Tn−2(ρ)β∨(π(sn−2))
]
.

In this expression, inside the inft≥s0≥s1≥···≥sn−1≥0, let us replace each 2ρTk(ρ) by
Tk−1(ρ) + Tk+1(ρ). We obtain

inf
t≥s0≥s1≥···≥sn−1≥0

[
2ρβ∨(π(s0)) + (T0(ρ) + T2(ρ))α∨(π(s1))

+ · · · + (Tn−2(ρ) + Tn(ρ))β∨(π(sn−1))
]

≥ inf
t≥s0≥s1≥···≥sn−1≥0
t≥u1≥···≥un−1≥0

[
2ρβ∨(π(s0)) + T2(ρ)α∨(π(s1))

+ · · · + Tn(ρ)β∨(π(sn−1)) + T0(ρ)α∨(π(u1))

+ · · · + Tn−2(ρ)β∨(π(un−1))
]

= inf
t≥s0≥···≥sn−1≥0

[
2ρβ∨(π(s0)) + T2(ρ)α∨(π(s1)) + · · · + Tn(ρ)β∨(π(sn−1))

]
+ inf

t≥s0≥···≥sn−2≥0

[
α∨(π(s0)) + T1(ρ)β∨(π(s1)) + · · · + Tn−2(ρ)β∨(π(sn−2))

]
.
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Furthermore,

α∨(
π(t)

) + inf
t≥s0≥···≥sn−1≥0

[
2ρβ∨(π(s0)) + T2(ρ)α∨(π(s1)) + · · · + Tn(ρ)β∨(π(sn−1))

]
≥ inf

t≥s0≥···≥sn−2≥0

[
α∨(π(s0)) + T1(ρ)β∨(π(s1)) + · · · + Tn−2(ρ)β∨(π(sn−2))

]
+ Tn−1(ρ)α∨(

π(T )
) + Tn(ρ)β∨(

π(T )
)
.

Putting everything together, we obtain

α∨(
PβPαPβ · · · π(t)

) ≥ α∨(
PβPαPβ . . . π(T )

)
,

and PβPαPβ · · · π is α-codominant. The case of n even is similar. This proves the
claim for dihedral groups.

Consider now a general Coxeter system. We do the proof by induction on l(w).
The claim is true if l(w) = 0. If it is true for some w, let sβ ∈ S be such that
l(sβw) > l(w). Now let α be such that l(sαsβw) > l(sβw) > l(w). Let n be the order
of sαsβ , and let

w = sαw1 = sαsβw2 = sαsβsαw3 = · · · = sαsβ · · · wk,

where k is the smallest integer such that

l(w) > l(w1) > · · · > l(wk)

and

l(sαwk) > l(wk), l(sβwk) > l(wk).

Since l(sαsβw) = l(wk) + k + 2, one has k + 2 ≤ n. By the induction hypothesis,
Pwk

(π) is both α- and β-codominant. Then it follows from the dihedral case that
Psβ

Pw = PβPwπ = PβPαPβ · · · Pwk
π is α-codominant. �

LEMMA 4.5
Let π be a codominant path, and let w ∈ W ; then Pwπ is the unique path η such that
Ew−1η = π and w(π(T )) = η(T ).

Proof
The proof is by induction on l(w), using Lemma 4.4. Let l(sαw) = l(w) + 1; then
Pwπ is α-codominant. Therefore PαPwπ is the unique path η such that Eαη = Pwπ

and η(T ) = sαPwπ(T ). �

Proposition 4.3 is the special case w = w0 in Lemma 4.5.
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LEMMA 4.6
We have

(−w0)Pw0 = Pw0 (−w0).

Proof
If α is a simple root, then α̃ = −w0α is also a simple root, and α̃∨ = −α∨w0. It
follows easily that (−w0)Pα(−w0) = Pα̃ .

If w0 = α1 · · · αr is a reduced expression, we thus have

Pw0 (−w0) = Pα1 · · · Pαr
(−w0) = (−w0)Pα̃1 · · · Pα̃r

= (−w0)Pw0

since w0 = α̃1 · · · α̃r . �

THEOREM 4.7
The transformation I = Pw0 (−w0)κ has the following properties:
(i) I 2 = Pw0 ;
(ii) the restriction of I to dominant paths is an involution;
(iii) IPw0 = I ;
(iv) the duality relation: for all paths π , one has

Iπ(T ) = Pw0π(T ).

In particular, one has Iπ(T ) = π(T ) when π is dominant.

Proof
By Lemma 4.6,

I 2 = Pw0κ(−w0)Pw0 (−w0)κ = Pw0κPw0κ = Pw0 Ew0 = Pw0 .

This proves (i) and implies (ii) since Pw0π = π when π is dominant. This also gives

IPw0 = I 3 = I 2I = I

since the image by I of any path is dominant. Finally, I = Pw0κ(−w0) = κEw0 (−w0),
and Proposition 4.3 gives (iv). �

Property (iv) is important for the first proof of the Brownian motion property.

4.4. Symmetry of a Littlewood-Richardson construction
The concatenation π � η of two paths π : [0, T ] → V η : [0, T ] → V is defined
in Littelmann [22] as the path π � η : [0, T ] → V given by π � η(t) = π(2t) when
0 ≤ t ≤ T/2 and π � η(t) = π(T ) + η(2(t − T/2)) when T/2 ≤ t ≤ T .
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LEMMA 4.8
For all w ∈ W , one has Pw(π � η) = Pw(π) � η′, where Pw0 (η′) = Pw0 (η).

Proof
One uses induction on the length l(w) of w. When l(w) = 1, it is easy to see that
Pw(π � η) = Pw(π) � η′, where Pw(η) = Pw(η′). Since Pw0 Pw = Pw0 , the claim
is thus true in this case. Suppose that it holds for elements of length n. Let w = w1s,
where l(w) = n + 1, l(w1) = n; then one has

Pw(π � η) = Pw1 Ps(π � η) = Pw1

(
Ps(π) � η′),

where Pw0η
′ = Pw0η. Now, by induction hypothesis,

Pw1

(
Ps(π) � η′) = (Pw1 Ps)(π) � η′′,

where Pw0η
′′ = Pw0η

′; and therefore Pw0η
′′ = Pw0η. �

In the case of Weyl groups, Littelmann has given the following analogue of the
Littlewood-Richardson construction. Let π and η be two integral dominant paths
defined on [0, T ]; then the set

LR(π, η) = {π � µ | µ ∈ Bη, π � µ is dominant}

gives a parametrization of the decomposition into irreducible representations of the
tensor product of the representations with highest weights π(T ) and η(T ). By Theo-
rem 4.7(iii), one has I (η)(T ) = η(T ) and I (π)(T ) = π(T ); therefore LR(I (η), I (π))
gives a parametrization of the decomposition of the tensor product of the representa-
tions with highest weights η(T ) and π(T ).

PROPOSITION 4.9
The map I : LR(π, η) → LR(I (η), I (π)) is a bijective involution, which preserves
the endpoints.

Proof
Let π � µ ∈ LR(π, η). By Lemma 4.8, there is a path ξ such that

I (π � µ) = Pw0

(
κ(−w0)(π � µ)

) = Pw0

(
κ(−w0)(µ) � κ(−w0)(π)

)
= Pw0

(
κ(−w0)(µ)

)
� ξ

and Pw0ξ = Pw0 (κ(−w0)(π)) = I (π). By Theorem 4.7(iii), one has I (µ) = I (η);
thus I (π � η) ∈ LR(I (η), I (π)). One easily checks that I preserves integrality, and
the other properties follow from Theorem 4.7. �
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4.5. Connection with the Schützenberger involution
In the case of a Weyl group of type Ad−1, the transform Pw0 is connected with
the Robinson, Schensted, and Knuth (RSK) correspondence. Let us consider a word
v1v2 · · · vn written with the alphabet {1, 2, . . . , d}. Let (P (n), Q(n)) be the pair of
tableaux associated with this word by RSK with column insertion (see, e.g., [14]). Let
a = {

(x1, . . . , xd ) ∈ R
d ;

∑d
i=1 xi = 0

}
, and let (ei) be the image in a of the canonical

basis of R
d . We identify vi with the path ηi : t �→ tevi

, 0 ≤ t ≤ 1, and we consider the
path π = η1�η2 · · ·�ηn. Then Pw0π is the path obtained by taking the successive shapes
of Q(1), Q(2), . . . , Q(n) (see Littelmann [22], [24], or [25] for a direct combinatorial
proof). Let us consider the pair (P̃ (n), Q̃(n)) associated by the RSK algorithm to
the word v∗

n · · · v∗
1 , where v∗ = d + 1 − v. The Schützenberger involution is the

map that associates the tableau Q̃(n) to the tableau Q(n) (see [12], [14], [21]). The
path associated with the word v∗

n · · · v∗
1 is I (π). Thus I is a generalization of this

involution. Note that I makes sense not only for Weyl groups but also for any finite
Coxeter group.

5. Representation of Brownian motion in a Weyl chamber

5.1. Brownian motion in a Weyl chamber
In this section, we recall some basic facts about Brownian motion in Weyl chambers.

We consider a Coxeter system (W, S) generated by a set S of reflections of a
Euclidean space V , and we assume that W is finite. We denote by C the interior of a
fundamental domain for the action of W on V (a Weyl chamber), and we denote by C

its closure.
If W is the Weyl group of a complex semisimple Lie algebra g with compact form

gR, then V is identified with a∗, the dual space of the Lie algebra of a maximal torus
T , and the Weyl chamber C = a

∗
+ can be identified with the orbit space of g∗

R
under

the coadjoint action of the simply connected compact group K with Lie algebra gR

(up to some identification of the walls). Let Z be a Brownian motion with values in
g∗

R
whose covariance is the Killing form. It is well known that the image of Z in the

quotient space g∗
R
/K remains in the interior of the Weyl chamber for all times t > 0,

even if the starting point is inside some wall. Since the transition probabilities of Z

are invariant under the coadjoint action, it follows that this image, under the quotient
map, is a Markov process on C. A description of this Markov process can be done
in terms of Doob’s conditioning. Namely, the process is obtained from a Brownian
motion X on V = a∗ killed at the boundary of the Weyl chamber by means of a Doob
transform with respect to the function

h(v) =
∏

α∈R+
α∨(v), v ∈ V,
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where R+ is the set of positive roots, which is the unique, up to a scaling factor,
positive harmonic function on C which vanishes on the boundary (see [6]). Recall
that, by the reflection principle, the transition probabilities for the Brownian motion
killed at the boundary of the Weyl chamber are

p0
t (x, y) dy =

∑
w∈W

ε(w)pt (x, wy) dy, x, y ∈ C, (5.1)

where pt (x, y) dy are the transition probabilities for the Brownian motion X given by
the Gaussian kernel on a∗ whose covariance is that of the Brownian motion. Thus the
probability transitions for the Doob process are

qt (x, y) dy = h(y)

h(x)

∑
w∈W

ε(w)pt (x, wy) dy (5.2)

for x ∈ C. These probability transitions can be continued by continuity to x ∈ C , in
particular, to x = 0.

For a general finite Coxeter group, formula (5.1) still gives the probability tran-
sitions of the Brownian motion killed at the boundary of the Weyl chamber. Let h be
the product of the positive coroots, defined as the linear forms corresponding to the
hyperplanes of the reflections in the group W , taking the signs so that they are positive
inside the Weyl chamber; then the function h is still the only (up to a multiplicative
constant) positive harmonic function vanishing on the boundary, and the equation
(5.2) defines the semigroup of what we call the Brownian motion in the fundamental
chamber C of V .

We prove that the Pitman operator Pw0 applied to Brownian motion in V yields
a Brownian motion in the Weyl chamber. We give two very different proofs of
this. The first one uses in an essential way the duality relation of Proposition 4.3
and a classical result in queuing theory. The second one uses a random walk ap-
proximation and relies on Littelmann theory and the Weyl character formula. It
is valid only for Weyl groups. We have chosen to present this second proof be-
cause it emphasizes the close connection between Brownian paths and Littelmann
paths.

5.2. Brownian motion with a drift
We now consider a Brownian motion in V with invariant covariance but also with a
drift ξ ∈ C. Its transition probabilities are now

pt,ξ (x, y) = pt (x, y) exp
(
〈ξ, y − x〉 − ‖ξ‖2

2
t
)
.

Actually, the distribution of this Brownian motion on the σ -field Ft generated by the
coordinate functions Xs, s ≤ t, on the canonical space is absolutely continuous with
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respect to the distribution of the centered Brownian motion with density

exp
(
〈ξ, Xt − X0〉 − ‖ξ‖2

2
t
)
.

Consider such a Brownian motion in V with drift ξ , starting inside the chamber at
point x, and killed at the boundary of C. The distribution of this process at time t is
therefore given by the density, for y ∈ C,

p0
t (x, y) exp

(
〈ξ, y−x〉 − ‖ξ‖2

2
t
)

=
∑
w∈W

ε(w)pt (x, wy) exp
(
〈ξ, y−x〉 − ‖ξ‖2

2
t
)

=
∑
w∈W

ε(w)pt (0, y−wx) exp
(
〈ξ, y−x〉−‖ξ‖2

2
t
)
,

where we have used the invariance of pt under the Weyl group. We now integrate this
density over C in order to get the probability that the exit time from C is larger than
t . Denoting by TC this exit time, one has

P (TC > t) =
∑
w∈W

ε(w)
∫

C

pt (0, y − wx) exp
(
〈ξ, y − x〉 − ‖ξ‖2

2
t
)

dy.

Since the drift ξ is in the chamber, for large t one has

∫
V \C

exp
(
〈ξ, y − x〉 − ‖ξ‖2

2
t
)

dy → 0.

Therefore∫
C

pt (0, y − wx) exp
(
〈ξ, y − x〉 − ‖ξ‖2

2
t
)

dy −→
t→∞ exp

(〈ξ, w(x) − x〉)

and

lim
t→∞ P (TC > t) = P (TC = ∞) =

∑
w∈W

ε(w) exp
(〈ξ, w(x) − x〉).

We denote this function by hξ (x). It follows that, conditionally on {TC = ∞}, the
Brownian motion with drift ξ , starting in C and killed at the boundary of C, is a
Markov process with transition probabilities

qt,ξ (x, y) = p0
t (x, y)

hξ (y)

hξ (x)
exp

(
〈ξ, y − x〉 − ‖ξ‖2

2
t
)
.
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Observe that hξ (y)/hξ (x) → h(y)/h(x) as ξ → 0. Standard arguments now show that
as x → 0 and ξ → 0, the distribution of this process approaches that of the Brownian
motion in the Weyl chamber, starting from zero.

Finally, we can rephrase this in the following way.

LEMMA 5.1
The distribution of the Brownian motion with a drift ξ ∈ C, started at zero and
conditioned to stay forever in the cone C − x (where x ∈ C), converges toward the
distribution of the Brownian motion in the Weyl chamber when x, ξ → 0.

5.3. Some further path transformations
Let w0 = s1 · · · sq be a reduced decomposition, and write αi = αsi

. Let η : [0, T ] → V

be a path with η(0) = 0. Recall that η is dominant if η(t) ∈ C for all t ≤ T . Set
ηq = η, and for j = 1, . . . , q, let

ηj−1 = Psj
· · · Psq

ηq, xj = − inf
0≤t≤T

α∨
j

(
ηj (t)

)
.

Then

Pw0η(T ) = η(T ) +
q∑

j=1

xjαj ,

and η is dominant if and only if xj = 0 for all j ≤ q. We now introduce some new
path transformations and give an alternative characterization of dominant paths.

Let w ∈ W be a reflection; that is, w is conjugate to some element in S. We choose
a nonzero element α of V such that wα = −α; then w is the reflection sα given by
(2.1), where α∨(v) = 2(α, v)/(α, α). As in [18], we call α a positive root when α∨ is
positive on the Weyl chamber C; it is a simple root when sα ∈ S. Observe that one
has Pα = Psα

for all positive roots. (The left-hand side is defined by Definition 2.1,
and the right-hand side is defined by Matsumoto’s lemma in [8] since sα ∈ W .)

Let β be a positive root, and let sβ be the associated reflection. For any positive
root α, one has

sβ Pα sβ = Psβ (α).

Consider the transformation Qβ = Pβ sβ . One has

Qβ η(t) = sβ η(t) + sup
0≤s≤t

β∨(
η(s)

)
β.

Furthermore, if w0 = s1 · · · sq is a reduced decomposition (si ∈ S), then

Qw0 := Pw0 w0 = Qβ1 · · · Qβq
,

where β1 = α1 and βj = s1 · · · sj−1αj .
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Now define transformations Dα = sαEα = ι Qα ι, where ι = −κ . One has

Dαη(t) = η(t) + inf
T ≥u≥t

α∨(
η(u) − η(t)

)
α − inf

T ≥u≥0
α∨(

η(u)
)
α. (5.3)

Set

Dw0 = Dβ1 · · · Dβq
= ι Qw0 ι,

and note that Dw0 = ι Pw0 (−κ) w0.
For a path η, set ρq = η, and for j ≤ q, let

ρj−1 = Dβj
· · · Dβq

ρq, yj = − inf
T ≥u≥0

β∨
j

(
ρj (u)

)
.

LEMMA 5.2
For all paths η, one has

Pw0η(T ) = η(T ) +
q∑

j=1

yjβj . (5.4)

In particular, η is dominant if and only if yj = 0 for all j ≤ q.

Proof
By construction,

Dw0η(T ) = η(T ) +
q∑

j=1

yjβj .

Since Dw0η(T ) = Pw0η(T ) by Proposition 4.3, this implies (5.4). The path η is dom-
inant if and only if Pw0η(T ) = η(T ). By (5.4), this holds if and only if

∑
j yjβj = 0,

and since the yj and βj are all positive, this is equivalent to the statement that yj = 0
for all j ≤ q. �

5.4. The representation theorem, first proof
The definitions of transformations Pα , Pw0 , Qα , Qw0 extend naturally to paths π

defined on R
+. In this section, we prove that if X is a Brownian motion in V (started

from the origin), then Qw0X is a Brownian motion in the fundamental chamber C.
Since w0 leaves the distribution of Brownian motion invariant, this implies that Pw0X

is a Brownian motion in C.
To prove this, we first extend the definition of the Dβ . Let β be a positive root.

For paths π : [0,+∞) → V with π(0) = 0 and α∨(π(t)) → +∞ as t → +∞ for all
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simple roots α, define

Dβπ(t) = π(t) + inf
s≥t

β∨(
π(s) − π(t)

)
β − inf

s≥0
β∨(

π(s)
)
β. (5.5)

Now set Dw0 = Dβ1 · · · Dβq
, as before. Since Dw0 does not depend on the chosen

reduced decomposition of w0, we can also write Dw0 = Dβq
· · · Dβ1 .

LEMMA 5.3
If π is a dominant path, one has Qw0 Dw0 π = π .

Proof
It is easy to see that for any positive root β and path ξ : [0, ∞) → V with ξ (0) = 0
and inft≥0 β∨(ξ (t)) = 0, we have QβDβξ = ξ . Let η0 = π , and let

ηj = Dβj
· · · Dβ1π, vj (t) := − inf

u≥t
β∨

j

(
ηj−1(u) − ηj−1(t)

)
.

Since π is dominant, we have, by Lemma 5.2 (with T → ∞), vj (0) = 0 for each
j ≤ q, and hence

Qw0 Dw0π = Qβ1 · · · Qβq
Dβq

· · · Dβ1 π = π,

as required. �

LEMMA 5.4
If X is a Brownian motion with drift in C, then Dw0X has the same distribu-
tion as X and, moreover, is independent of the collection of random variables
{inft≥0 α∨(X(t)), α simple root}.

Proof
To prove this, we first need to extend the definitions of Dβ and Qβ to paths π defined
on R with π(0) = 0 and α∨(π(t)) → +−∞ as t → +−∞ for all simple α. For t ∈ R, set

Qβπ(t) = sβ π(t) + sup
s≤t

β∨(
π(s)

)
β − sup

s≤0
β∨(

π(s)
)
β,

and define Dβπ by (5.5), allowing t ∈ R. Then, if ι denotes the involution

ι π(t) = −π(−t),

one has Dβ = ι Qβ ι and Dw0 := Dβq
· · · Dβ1 = ι Qw0 ι, as before. Note that

Dw0 does not depend on the particular reduced decomposition of w0 and also that
Dβ(π(t), t ≥ 0) = (Dβπ(t), t ≥ 0) and Dw0 (π(t), t ≥ 0) = (Dw0π(t), t ≥ 0). We
use the following auxiliary lemma.
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LEMMA 5.5
Let π : R → V with π(0) = 0, and let α(π(t)) → +−∞ as t → +−∞ for all simple
roots α. Then, for all t ∈ R,

− inf
u≥t

β∨(
π(u) − π(t)

) = − inf
s≤t

β∨(
Dβ π(u) − Dβ π(t)

)
.

Proof
This can be checked directly or deduced from (2.2). �

Introduce a Brownian motion Y indexed by R such that X = (Y (t), t ≥ 0) and
(ιY (t), t ≥ 0) is an independent copy of X. For any positive root β, the distribution
of DβY is the same as that of Y . This is a one-dimensional statement that can be
checked directly or can be seen as a consequence of the classical output theorem
on the (M/M/1)-queue (see, e.g., [26]). In particular, the distribution of DβX is the
same as that of X. It follows that Dw0Y has the same distribution as Y and that Dw0X

has the same distribution as X. Let Y0 = Y , and let

Yj = Dβj
· · · Dβ1Y, Vj (t) := − inf

u≥t
β∨

j

(
Yj−1(u) − Yj−1(t)

)
.

Note that Yq = Dw0Y , and recall that, for t ≥ 0, Dw0Y (t) = Dw0X(t). By Lemma 5.5,
one has

Vq(t) = − inf
s≤t

β∨
j

(
Yq(s) − Yq(t)

)
,

Yq−1(t) = Yq(t) + (
Vq(t) − Vq(0)

)
βq

and, by induction on k,

Vq−k(t) = − inf
s≤t

β∨
j

(
Yq−k(s) − Yq−k(t)

)
,

Yq−k−1(t) = Yq−k(t) + (
Vq−k(t) − Vq−k(0)

)
βq−k.

It follows that the (Vj (t), t ≤ 0) are measurable with respect to the σ -field generated
by (Dw0Y (s), s ≤ 0). In particular, the random variable V1(0) = inft>0 β∨

1 (X(t))
is measurable with respect to the σ -field generated by (Dw0Y (s), s ≤ 0). Now,
for each α ∈ S, there is a reduced decomposition of w0 with β1 = α, so we see
that the random variables inft≥0 α∨(X(t)), α simple root, are all measurable with
respect to the σ -field generated by (Dw0Y (s), s ≤ 0) and therefore independent of
(Dw0Y (s), s ≥ 0), as required. Thus Lemma 5.4 is proven. �

THEOREM 5.6
Let X be a Brownian motion in V . Then Pw0X is a Brownian motion in C.
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Proof
Let x, ξ ∈ C, and let X be a Brownian motion with drift ξ . The event “X re-
mains in the cone C − x for all times” can be expressed in terms of the vari-
ables inft≥0 α∨(X(t)), α simple root; therefore, by Lemma 5.4, it is independent of
(Dw0X(t), t ≥ 0). Thus if R has the same distribution as that of X conditioned on this
event, then Dw0R has the same distribution as X. Now we can let x, ξ → 0 so that X

is a Brownian motion with no drift and R is a Brownian motion in C; by continuity,
Dw0R has the same distribution as X. Now, by Lemma 5.3, Qw0 Dw0R = R a.s. It
follows that Qw0X and hence Pw0X are Brownian motions in C, as required. �

5.5. Random walks and Markov chains on the weight lattice
We now present the second proof of the Brownian motion property. We assume that
W is the Weyl group of the semisimple Lie algebra g, as in Sections 3.1 and 5.1, and
that V = a∗. As in Section 5.1, let T be a maximal torus of the compact group K ,
the simply connected compact group with Lie algebra gR, a compact form of g. Let
ω ∈ P+ be a nonzero dominant weight, and let χω be the character of the associated
highest weight module. As a function on T , this is the Fourier transform of the positive
measure Rω on P , which puts a weight mω

µ on a weight µ, where mω
µ is the multiplicity

of µ in the module with highest weight ω. In other words,

χω =
∑
µ∈P+

mω
µe(µ),

where e(µ)(θ) = e2iπ〈µ,θ〉 is the character on T . We can divide this measure Rω by
dim ω to get a probability measure

νω = 1

dim ω
Rω.

Consider the random walk Xn, n ≥ 0, on the weight lattice whose increments are
distributed according to this probability measure, started at zero. Thus the transition
probabilities of this random walk are given by

pω(µ, λ) = mω
λ−µ

dim ω
.

Donsker’s theorem and invariance of mω under the Weyl group imply the following
theorem.

THEOREM 5.7
The stochastic process X[Nt]/

√
N converges, as N → ∞, to a Brownian motion on

a∗ with correlation invariant under W .
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Let us define a probability transition function qω on P+ by the formula

χµ

dim µ

χω

dim ω
=

∑
λ∈P+

qω(µ, λ)
χλ

dim λ
.

Thus qω(µ, λ) is equal to Mλ
ω,µdim λ/dim ω dim µ, where Mλ

ω,µ is the multiplicity of
the module with highest weight λ in the decomposition of the tensor product of the
modules with highest weights ω and µ (see, e.g., [11], [5]).

LEMMA 5.8
One has

qω(µ, λ) = dim λ

dim µ

∑
w∈W

ε(w)pω

(
µ + ρ, w(λ + ρ)

)
.

Proof
Let dk be the normalized Haar measure on K . By the orthogonality relations for
characters, one has

Mλ
ω,µ =

∫
K

χλ(k)χµ(k)χω(k) dk.

Therefore

qω(µ, λ) = Mλ
ω,µdim λ

dim ω dim µ
= dim λ

dim µ dim ω

∫
K

χλ(k)χµ(k)χω(k) dk.

Now we can use the Weyl integration formula as well as the Weyl character formula
to rewrite the formula as an integral over T , the maximal torus of K . Thus

qω(µ, λ) = |W | dim λ

dim µ dim ω

∫
T

∑
w1,w2∈W

ε(w1)ε(w2)e
(
w1(λ + ρ)

)
(θ)e

× (
w2(µ + ρ)

)
(θ)χω(θ) dθ,

where e(γ )(θ) = e2iπ〈γ,θ〉 and ρ is half the sum of positive weights. Now using the
invariance of χω under the Weyl group, we can rewrite this as

qω(µ, λ) = dim λ

dim µ dim ω

∫
T

∑
w∈W

ε(w)e(λ + ρ)(θ)e
(
w(µ + ρ)

)
(θ)χω(θ) dθ

= dim λ

dim µ

∑
w∈W

pω

(
µ + ρ,w(λ + ρ)

)
. �

From (5.2), Theorem 5.7, Lemma 5.8, and standard arguments, we deduce the follow-
ing proposition.
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PROPOSITION 5.9
Let Y be a Markov chain on P+ started at zero, with transition probabilities qω(µ, λ);
then Y ([Nt])/

√
N converges in distribution, as N → ∞ to a Brownian motion in the

Weyl chamber C.

5.6. Pitman operators and the Markov chain on the weight lattice
We choose a nonzero dominant weight ω and a dominant path πω defined on [0, 1] with
πω(1) = ω. Let Bπω be the set of paths in the Littelmann module generated by πω.
We now construct a stochastic process with values in P . Choose independent random
paths ηn ∈ Bπω, n = 1, 2, . . . , each with uniform distribution on Bπω, and define
the stochastic process Z as the random path obtained by the usual concatenations
η1 ∗η2 ∗· · · of the ηi , i = 1, 2, . . . . In other words, one has Z(t) = η1(1)+η2(1)+· · ·
+ηn−1(1)+ηn(t−n) if t ∈ [n, n+1]. Beware that this concatenation does not coincide
with Littelmann’s definition, recalled in Section 4.4, since we do not rescale the time.
Littelmann’s theory then implies that ηn(1) is a random weight in P with distribution
νω and that Z(n), n = 0, 1, . . . , is the random walk in a∗ with this distribution of
increments.

THEOREM 5.10
The stochastic process Pw0Z(n), n = 0, 1, . . . , is a Markov chain on P+ with proba-
bility transitions qω.

Proof
First note that the set of paths of the form η1 ∗ η2 ∗ · · · ∗ ηn, where ηi ∈ Bπω, is
stable under Littelmann operators by [22]; therefore, by (2.3), it is also stable under
Pitman transformations. Consider a dominant path of the form γ1 ∗ γ2 ∗ · · · ∗ γn with
all γi ∈ Bπω. We compute the conditional probability distribution of Pw0Z(n + 1)
knowing that Pw0Z(t) = γ1 ∗γ2 ∗· · ·∗γn(t) for t ≤ n. Let µ = γ1 ∗γ2 ∗· · ·∗γn(1). By
Corollary 2.10, the set of all paths of the form η1 ∗η2 ∗ · · · ∗ηn such that Pw0 (η1 ∗η2 ∗
· · ·∗ηn) = γ1 ∗γ2 ∗· · ·∗γn coincides with the Littelmann module B(γ1 ∗γ2 ∗· · ·∗γn).
Now consider a path ηn+1 ∈ Bπ and the concatenation η1 ∗ η2 ∗ · · · ∗ ηn ∗ ηn+1; then
Pw0 (η1 ∗η2 ∗ · · · ∗ηn ∗ηn+1) is the dominant path in the Littelmann module generated
by η1 ∗η2 ∗ · · · ∗ηn ∗ηn+1. By Littelmann’s version of the Littlewood-Richardson rule
(see [22, Sec. 10]), the number of pairs of paths (η1 ∗ η2 ∗ · · · ∗ ηn, ηn+1) such that
Pw0 (η1∗η2∗· · ·∗ηn) = γ1∗γ2∗· · ·∗γn and Pw0 (η1∗η2∗· · ·∗ηn∗ηn+1)(1) = λ is equal
to the dimension of the isotypic component of type λ in the module which is the tensor
product of the highest weight modules µ and ω; in particular, this depends only on µ

and is equal to Mλ
ω,µdim λ. Since the total number of pairs (η1 ∗ η2 ∗ · · · ∗ ηn, ηn+1)

with Pw0 (η1 ∗ η2 ∗ · · · ∗ ηn) = γ1 ∗ γ2 ∗ · · · ∗ γn is dim µ dim ω, we see that the
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conditional probability we seek is Mλ
ω,µdim λ/dim ω dim µ = qω(µ, λ). This proves

the claim. �

5.7. Second proof of the representation theorem for Weyl groups
Putting together Proposition 5.9 and Theorem 5.10, we get another proof of Theo-
rem 5.6. Indeed, by Donsker’s theorem, the process Z([Nt])/

√
N gives as limit the

Brownian motion in a∗. By Theorem 5.10, the process Pw0Z(n), n ≥ 0, is distributed
as the Markov process of Proposition 5.9. Applying the scaling of Proposition 5.9 to
the stochastic process Pw0Z(t), t ≥ 0, yields for limit process the Brownian motion
on the Weyl chamber. Since Pw0 is a continuous map that commutes with scaling, we
get the proof of Theorem 5.6 when W is the Weyl group of a complex semisimple Lie
algebra. �

5.8. A remark on the Duistermaat-Heckman measure
The distribution of the path t ∈ [0, n] �→ Z(t) is uniform on the set

B(πω)∗n = {η1 ∗ η2 ∗ · · · ∗ ηn; ηi ∈ Bπω}.

Therefore, for any path η ∈ B(πω)∗n, the distribution of (Z(s))0≤s≤n, conditionally
on Pw0Z(s) = η(s), 0 ≤ s ≤ n, is uniform on the set γ ∈ B(πω)∗n; Pw0γ = η. It
thus follows from the Littelmann theory (see [22]) that the conditional distribution of
the terminal value Zn is the probability measure νη. It has been proved by Heckman
[17] (see also [16], [10]) that if γε → ∞ in a∗

+ and εγε → v, then Dενγε
converges

to the so-called Duistermaat-Heckman (DH) measure associated to v, that is, the
projection of the normalized measure on the coadjoint orbit of K through v, by the
orthogonal projection on a∗. This follows from Kirillov’s character formula for K .
From Section 5.7, we deduce that if X is the Brownian motion on a∗, then the law
of X(T ), conditionally on Pw0X = γ on [0, T ], is the DH measure associated with
γ (T ).

A. Appendix. Proof of Proposition 2.2(iv)
Let η be a path. Defining π = Pαη, x = − infT ≥t≥0 α∨(η(t)), and t0 =
sup{t |α∨(η(t)) = −x}, we check that equation (2.2) is valid.

If t ≥ t0, then one has inf0≤s≤t α
∨(η(s)) = −x. Therefore

α∨(
π(t)

) = α∨(
η(t)

) + 2x

= x + (
α∨(η(t)) + x

)
≥ x

for all t ≥ t0. It follows that inf
(
x, infT ≥s≥t α

∨(π(s))
) = x for t ≥ t0. Formula (2.2)

follows for t ≥ t0.
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If t < t0, let u = inf{s ≥ t |α∨(η(s)) = inf0≤v≤t α
∨(η(v))}. Then t ≤ u ≤ t0. One

has

α∨(
π(u)

) = α∨(
η(u)

) − 2 inf
0≤v≤u

α∨(
η(v)

)
= −α∨(

η(u)
)
,

which implies that infT ≥v≥t α
∨(π(v)) ≤ − inf0≤v≤t α

∨(η(v)) ≤ x. On the other hand,
for v ≥ t , one has

α∨(
π(v)

) = α∨(
η(v)

) − 2 inf
0≤s≤v

α∨(
η(s)

)
≥ (

α∨(η(v)) − inf
0≤s≤v

α∨(η(s))
) − inf

0≤s≤t
α∨(

η(s)
)

≥ − inf
0≤s≤t

α∨(
η(s)

)
.

Therefore infT ≥v≥t α
∨(π(v)) = − inf0≤s≤t α

∨(η(s)), and formula (2.2) for t < t0

follows. The existence and uniqueness in Proposition 2.2 follows. �
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7 – 8, Actualités Sci. Indust. 1364, Hermann, Paris, 1975. MR 0453824

[10] J. J. DUISTERMAAT and G. J. HECKMAN, On the variation in the cohomology of the
symplectic form of the reduced phase space, Invent. Math. 69 (1982), 259 – 268.
MR 0674406

[11] P. EYMARD and B. ROYNETTE, “Marches aléatoires sur le dual de SU (2)” in Analyse
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