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Abstract
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1. Introduction

1.1.  The aim of this paper is to introduce a notion of continuous crystals for Coxeter groups,
which are not necessarily Weyl groups. Crystals are combinatorial objects, which have been as-
sociated by Kashiwara to Kac—Moody algebras, in order to provide a combinatorial model for
the representation theory of these algebras, see, e.g., [15,17,18,21] for an introduction to this
theory. The crystal graphs defined by Kashiwara turn out to be equivalent to certain other graphs,
constructed independently by Littelmann, using his path model. The approach of Kashiwara to
the crystals is through representations of quantum groups and their “crystallization,” which is the
process of letting the parameter g in the quantum group go to zero. This requires representation
theory and therefore does not make sense for realizations of arbitrary Coxeter groups. On the
other hand, as it was realized in a previous paper [3], Littelmann’s model can be adapted to fit
with non-crystallographic Coxeter groups, but the price to pay is that, since there is no lattice
invariant under the action of the group, one can only define a continuous version of the path
model, namely of the Littelmann path operators (see however the recent preprint [19], which has
appeared when this paper was under revision). In this continuous model, instead of the Littel-
mann path operators ¢;, f; we have continuous semigroups e}, f! indexed by nonnegative real
numbers ¢ > 0. In the crystallographic case it is possible to think of these continuous crystals
as “semi-classical limits” of the combinatorial crystals, in much the same way as the coadjoint
orbits arise as semi-classical limits of the representations of a compact semi-simple Lie group.
These continuous path operators, and the closely related Pitman transforms, were used in [3] to
investigate symmetry properties of Brownian motion in a space where a finite Coxeter group acts,
with applications in particular to the motion of eigenvalues of matrix-valued Brownian motions.
In this paper, which is a sequel to [3], but can for the most part be read independently, we define
continuous crystals and start investigating their main properties. As for now the theory works
well for finite Coxeter groups, but there are still several difficulties to extend it to infinite groups.
This theory allows us to define objects which are analogues to simplified versions of the Schubert
varieties (or Demazure-Littelmann modules) associated with semi-simple Lie groups. We hope
these objects might help in certain questions concerning Coxeter groups, such as, for example,
the Kazhdan—Lusztig polynomials.

1.2.  This paper is organized as follows. The next section contains the main definition, that
of a continuous crystal associated with a realization of a Coxeter group. We establish the main
properties of these objects, following closely the exposition of Joseph in [18]. It would have been
possible to just refer to [18] for the most part of this section, however, for the convenience of the
reader, and also for convincing ourselves that everything from the crystallographic situation goes
smoothly to the continuous context, we have preferred to write everything down. The main body
of the proof is relegated to Appendix A in order to ease the reading of the paper. The main
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result of this section is Theorem 2.6, a uniqueness result for continuous crystals, analogous to
the one in [18]. In Section 3 we introduce the path operators and establish their most important
properties. Our approach to the path model is different from that in Littelmann [23], in that we
base our exposition on the Pitman transforms, which are defined from scratch. These transforms
satisfy braid relations, which where proved in [3], and which play a prominent role. Using these
operators, the set of continuous paths is endowed with a crystal structure and the continuous
analogues of the Littelmann modules are introduced as “connected components” of this crystal
(see the discussion following Proposition 3.9, Definition 3.10 and Theorem 3.11). Our definition
makes sense for arbitrary Coxeter groups, but we are able to prove significant properties of these
only in the case of finite Coxeter groups. It remains an interesting and challenging problem to
extend these properties to the general case. Continuous Littelmann modules can be parametrized
in several ways by polytopes, corresponding to different reduced decompositions of an element
in the Coxeter group. In the case of Weyl groups, these are the Berenstein—Zelevinsky polytopes
(see [2]) which contain the Kashiwara coordinates on the crystals. In Section 4 we state some
properties of these parametrizations. In Theorem 3.12 we prove that two such parametrizations
are related by a piecewise linear transformation, and in Theorem 4.5 we show that the polytopes
can be obtained by the intersection of a cone depending only on the element of the Coxeter group,
and a set of inequalities which depend on the dominant path. Furthermore, we provide explicit
equations for the cone in the dihedral case (in Proposition 4.7). In Theorem 4.9 we prove that
the crystal associated with a Littelmann module depends only on the end point of the dominant
path, then in Theorem 4.14 we obtain the existence and uniqueness of a family of highest weight
normal continuous crystals. We show that the Coxeter group acts on each Littelmann module
(Theorem 4.16). We introduce the Schiitzenberger involution in Section 4.10 and use it to give
a direct combinatorial proof of the commutativity of the tensor product of continuous crystals
(Theorem 4.20). We think that even in the crystallographic case our treatment sheds some light
on these topics. In Section 5, we introduce an analogue of the Duistermaat—-Heckman measure,
motivated by a result of Alexeev and Brion [1]. We prove several interesting properties of this
measure, in particular, in Theorem 5.5, an analogue of the Harish-Chandra formula. The Laplace
transform appearing in this formula is a generalized Bessel function. It is shown in Theorem 5.16
to satisfy a product formula, giving a positive answer to a question of Rosler. The Duistermaat—
Heckman measure is intimately linked with Brownian motion, and in Corollary 5.3 we give a
Brownian proof of the fact that the crystal defined by the path model depends only on the final
position of the path. The final section is of a quite different nature, and somewhat independent
of the rest of the paper. The Littelmann path operators have been introduced as a generalization,
for arbitrary root systems, of combinatorial operations on Young tableaux. Here we show how,
using some simple considerations on Sturm—Liouville equations, the Littelmann path operators
appear naturally. In particular this gives a concrete geometric basis to the theory of geometric
lifting which has been introduced by Berenstein and Zelevinsky in [2] in a purely formal way.

2. Continuous crystal

This section is devoted to introducing the main definition and first properties of continuous
crystals.
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2.1. Basic definition

We use the standard references [4,16] on Coxeter groups and their realizations. A Coxeter
system (W, S) is a group W generated by a finite set of involutions S such that, if m(s, s") is the
order of ss’ then the relations

(Ss/)m(s,s’) -1

for m(s, s) finite, give a presentation of W.

A realization of (W, S) is given by a real vector space V with dual V", an action of W on V,
and a subset {(«;, ), s € S} of V x V" such that each s € S acts on V by the reflection given
by

s(x)=x — ot;/(x)oés, xeV,

so a (ag) = 2. One calls o the simple root associated with s € S and «;’ its coroot.

We consider a realization of a Coxeter system (W, S) in a real vector space V, and the as-
sociated simple roots ¥ = {o;, s € S} in V and coroots {«;’, s € S} in V. The closed Weyl
chamber is the convex cone

C= {veV a)/(v) >0, forallaeS}

thus the simple roots are positive on C. There is an order relation on V induced by this cone,
namely A < p if and only if u — A € C.

We adapt the definition of crystals due to Kashiwara (see, e.g., Kashiwara [20,21], Joseph [17])
to a continuous setting.

Definition 2.1. A continuous crystal is a set B equipped with maps

wt:B—>V,
Eq,Po:B—>RU{—00}, ae€lX,
e,:BU{0} > BU{0}, aeX, rekR,

where 0 is a ghost element, such that the following properties hold, for all « € X', and b € B:

(C1) @o(b) = ea(b) +a” (wit(D)).

(C2) If ¢, (b) # 0 then

gq(ehb) = eq(b) — 1,
(ez,b) @a(b) +r,
( " b) =wt(b) +ra.

(C3) Forallr eR, b € B one has ¢,(0) =0, eg (b) =b.If e/,(b) # 0 then, for all s € R,

et (b) = e (el (b)).



1526 P. Biane et al. / Advances in Mathematics 221 (2009) 1522—1583

(C4) If gy (b) = —oc then ¢/, (b) =0, for all r € R, r # 0.

The point is that, in this definition, r takes any real value, and not only discrete ones. Some-
times we write, for r > 0,

r —r
fo=e,".

Example 2.2 (The crystal B, ). For each o € X', we define the crystal B, as the set {b,(¢), t is a
nonpositive real number}, with the maps given by

wt(ba(D) =tar,  eaba()=~1.  @u(ba(®) =1,
el (ba (t)) =by(t+r) ifr<—t and e, (ba (t)) =0, otherwise,

and, if o’ # o, gy (be (1)) = —00, Qg (by (1)) = —00, e, (by(1)) =0, when r #0.
2.2. Morphisms
Definition 2.3. Let B; and B; be continuous crystals.

1. A morphism of crystals i : By — Bj is a map ¥ : By U {0} — B, U {0} such that ¢/ (0) =0
and forallo € X' and b € By,

wi (Y (b)) = wi(b), ea(V (D)) = £ (b), 0u (¥ (D)) = pu(b)

and e}, (¥ (b)) = Y (e, (b)) when e}, (b) € By.
2. A strict morphism is a morphism v : By — By such that e, (y (b)) = v (e}, (b)) forall b € By.
3. A crystal embedding is an injective strict morphism.

The morphism v is called a crystal isomorphism if there exists a crystal morphism ¢ : By —
By such that ¢ o =idp,uj0y, and Y o ¢ = idp,uqey. It is then an embedding.

2.3. Tensor product

Consider two continuous crystals By and B, associated with (W, S, X'). We define the tensor
product B; ® B> as the continuous crystal with set B = B; x B, whose elements are denoted
b1 ® by, for by € By, by € By. Let 0 = ¢, (b1) — £4(b2) where (—o0) — (—o0) =0, let o =
max(0, o) and 0~ = max(0, —o), then the maps defining the tensor product are given by the
following formulas:

wt(b1 ® by) = wt(by) + wt(by),
eq(b1 ® by) =€4(b1) +07,
ba(b1 ® b2) = o (b2) + 07,

er (b1 ®by) =™ """ b @ eami“(r»—")+0+b2.
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Here b1 ® 0 and 0 ® b, are understood to be 0. Notice that when o > 0, one has g, (b| ® by) =
£y (b1) and

e, (b1 ®@by)=e, by ®by, forallr e[—o, +ool. 2.1

As in the discrete case, one can check that the tensor product is associative (but not commutative)
so we can define without ambiguity the tensor product of several crystals.

2.4. Highest weight crystal
A crystal B is called upper normal when, for all b € B,
eq(b) = max{r > 0; el (b) # 0}
and is called lower normal if
9o (b) = max{r >0; e;"(b) #0}.

We call it normal (this is sometimes called seminormal by Kashiwara) when it is lower and upper
normal. Notice that this implies that g, (b) = 0 and ¢, (b) = 0.
We introduce the semigroup JF generated by the { f, « simple root, r > 0}:

.7:={fr1~~frk keN* ri,...,rp >0, al,...,akez},

o] o’

and, if b is an element of a continuous crystal B, the subset F(b) ={f(b), f € F} of B.

Definition 2.4. Let A € V, a continuous crystal B(}) is said to be of highest weight A if there
exists by € B(A) such that wt(by) = A, e}, (by) =0, forall r > 0 and « € X' and such that B(A) =
F(by).

For a continuous crystal with highest weight 2, such an element b, is unique, and called the
primitive element of B()). If the crystal is normal then A must be in the Weyl chamber C. The
vector A is a highest weight in the sense that, for all b € B(A), wt(b) < A.

2.5. Uniqueness

Following Joseph [17,18] we introduce the following definition.

Definition 2.5. Let (B(A), A € C), be a family of highest weight continuous crystals. The family
is closed if, for each A, u € C, the subset F(b) ® b,,) of B(A) ® B(u) is a crystal isomorphic to
B(A+ ).

Joseph [17, 6.4.21], has shown in the Weyl group case, for discrete crystals, that a closed
family of highest weight normal crystals is unique. The analogue holds in our situation.

Theorem 2.6. For a realization of a Coxeter system (W, S), if a closed family B()), » € C, of
highest weight continuous normal crystals exists, then it is unique.

The proof of the theorem, which follows closely Joseph [18], is in Appendix A.1.
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3. Pitman transforms and Littelmann path operators for Coxeter groups

In this section we recall definition and properties of Pitman transforms, introduced in our
previous paper [3]. We deduce from these properties the existence of Littelmann operators, then
we define continuous Littelmann modules, prove that they are continuous crystals, and make a
first study of their parametrization.

3.1. The Pitman transform

Let V be a real vector space, with dual space V. Let « € V and «¥ € VY be such that
a” () = 2. The reflection s, : V — V associated to (o, @) is the linear map defined, for x € V,
by

Se(®)=x —a” (X)a.

For T > 0, let C(T)(V) be the set of continuous path 1:[0, T] — V such that n(0) = 0, with
the topology of uniform convergence. We have introduced and studied in [3] the following path
transformation, similar to the one defined by Pitman in [30].

Definition 3.1. The Pitman transform P, associated with («, a") is defined on C (%(V) by the
formula:

— () — inf >1>0.
Pan(®) =n() - inf o (), T>1>0

Z82

A pathn e Cg(V) is called a-dominant when o (5(¢)) > 0 for all 7 € [0, T]. The following
properties of the Pitman transform are easily established.

Proposition 3.2.

(1) The transformation Py : C g (V)y—C (T)(V) is continuous.
(i) Foralln e Cg (V), the path Py is a-dominant and Pyn = n if and only if n is a-dominant.
(iii) The transformation Py is an idempotent, i.e. Py Pyn = Pyn forall n € Cg(V).
(iv) Letw € C%(V) be a-dominant, and let x € [0, oV (7 (T))), then there exists a unique path
nin C(%(V) such that Pyn =1 and n(T) = n(T) — xa. Moreover for 0 <t < T,

1@ =) —min[x, inf o (7()]e

>s>t

3.2. Littelmann path operators

Let V,VY,a,a" be as above. Using Proposition 3.2, as in [3], we can define generalized
Littelmann path operators (see [23]).

Definition 3.3. Let n € C % (V), and x € R, then we define &£} as the unique path such that

Pulyn="Pon and Eyn(T)=n(T)+ x«
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if —a¥(n(T)) + infoc;<r o’ (n(1)) < x < —info, <7 ¥ (n(2)) and EXn = 0 otherwise. The
following formula holds:

Exn@)=n() — min(—x, t<inf otv(n(s)) — infTaV(n(s)))oc

LN <<

if —a¥(T)+infog,<r oY (1)) <x <0, and

Exn(t) =n(t) — min(O, —x = iniTaV(n(s)) + 0<inf< av(n(s)))a

S I
if 0 <x < —infog, <7 ¥ ((2)).

Here, as in the definition of crystals, 0 is a ghost element. The following result is immediate
from the definition of the Littelmann operators.

Proposition 3.4. £ = and EXE)n = €5y as long as E4n # 0.

We shall also use the notation F;; = &£, for x > 0, and denote by H;, the restriction of the
operator F; to a-dominant paths. Let 7 be an a-dominant path in C%(V) and 0 < x < a¥(T),
then H,, 7 is the unique path in C%(V) such that

PoHom =7
and
Hon(T)=7(T) — xa.
Observe that in this equality

=— inf o'(Hin()).
X ogl?gTa (Har[( ))

3.3. Product of Pitman transforms

Leta,B € Vanda, BY € VY besuchthata¥(8) < 0and B8Y(a) < 0. Replacing if necessary
(o, ¥, B, BY) by (ta, ¥ /1, B/1,1B"), which does not change P, and Pg, we will assume that
a (B) = BY (a). We use the notations p = —%av(,ﬁ) = —%ﬂv(oe). The following result is proved
in [3].

Theorem 3.5. Let n be a positive integer, then if p > cos %,
n—1
(PaPpPa- - (1) =m(1) - inf (Z T,-<p)z<'><s,->)a
—_— 12502812 25n-120 0

n terms

n—2
ZT,-(p)Z““)(si))ﬁ 3.1)
i=0

inf
12502812 25p—220\ 4
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where Z9 (1) = oV (7 (1)) if k is even and Z® (1) = BV (1)) if k is odd. The Ty(x) are the
Tchebycheff polynomials defined by

To(x) =1, Ti(x) =2x, 2xTy(x) = Tx—1(x) + Ti+1(x)  fork > 1. (3.2)
The Tchebycheff polynomials satisfy Ti(cosf) = Si“gcTt)l)g and, in particular, under the as-

sumptions on p and n, Ti(p) = 0 for all k < n — 1. An important property of the Pitman
transforms is the following corollary (see [3]).

Theorem 3.6 (Generalized braid relations for the Pitman transforms). Let o, € V and
aY,BY € VY be such that a” (a) = B (B) =2, and a¥ (B) <0, BY(a) <0 and a” (B)B" (a) =
4 cos? % where n > 2 is some integer. Then

Papﬂpa el = Pﬁpapﬂ ‘e

where there are n factors in each product.
3.4. Pitman transforms for Coxeter groups

Let (W, S) be a Coxeter system, with a realization in the space V. For a simple reflection s,
denote by Pg, or Py the Pitman transform associated with the pair (a5, «)’). From Theorem 3.6
and Matsumoto’s lemma [4, Ch. IV, No. 1.5, Prop. 5], we deduce [3]:
Theorem 3.7. Let w = 51 . ..5, be a reduced decomposition of w € W, with s1,...,s, € S. Then

Py =Py ... Py,

depends only on w and not on the chosen decomposition.

When W is finite, it has a unique longest element, denoted by wy. The transformation P,
plays a fundamental role in the sequel. The following result is proved in [3].

Proposition 3.8. When W is finite, for any path n € C (T)(V), the path Py, n takes values in the

closed Weyl chamber C. Furthermore Puy is an idempotent and Py, Py = PuwyPw = Pu, for all
wew.

3.5. The continuous crystal Cg(V)

For any path 5 in C 9 (V),let wt(n) =n(T). Let €], be the generalized Littelmann operator &,
defined in Definition 3.3, and

sa () =max{r >0; & #0} =~ inf o (n@®),

X

g () =max{r >0; 7 () #0} =a (n(T)) — O<in£Tav(77(t)).

XX

It is clear that
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Proposition 3.9. With the above definitions, C g(V) is a normal continuous crystal.
We say that a path is dominant if it takes its values in the closed Weyl chamber C.
Definition 3.10. Let 7 € C g(V) be a dominant path, and w € W. We define
LY={ne CoV); Pun =n}.

These sets are defined for arbitrary Coxeter groups. We shall establish their main properties in
the case of finite Coxeter groups, where they are analogues of Demazure—Littelmann modules. It
remains an interesting problem to establish similar properties in the general case.

From now on we assume that W is finite, with longest element wg, and we denote L, =
Ly, which we call the Littelmann module associated with . The set L, U {0} is a subset of
Cg (V) U {0} invariant under the Littelmann operators, thus:

Theorem 3.11. For any dominant path 7, Ly is a normal continuous crystal with highest weight
7 (T).

Proof. This follows from the result of Section 3.4, except the highest weight property, which
follows from the fact that, see (3.5), any 1 € L, can be written as

=M My H . O

Sq_]

Two paths 11 and 1, are said to be connected if there exists simple roots 1, ..., ax and real
numbers rq, ..., r; such that

This is equivalent with the relation Py,n1 = Py,n2. A connected set in C‘%(V) is a subset in
which each two elements are connected. We see that the sets { L, ¥ dominant} are the connected
components in C (T)(V). Moreover we will show in Theorem 4.9 that the continuous crystals L,
and Ly, are isomorphic if and only if 71 (T') = mo(T).

3.6. Braid relations for the H operators

Let w € W and fix a reduced decomposition w = s1 ...s,. For any path 5 in C(%(V), denote
np=nandfork=1,...,p,

Mk—1 =Py ... Ps, 1.
Then ni—1 = Py, nk is a5 -dominant, by Proposition 3.2(ii) and
e = Fofnk—1 = Hgf k-1
where

=— inf af ). 3.3
Xk 0<1It1<T0ésk(nk()) (3.3)



1532 P. Biane et al. / Advances in Mathematics 221 (2009) 1522—1583

Observe that

x €0, g (me—1(T))] 3.4)
and
(T = ni—1(T) — xpg;
thus,
k
e (T) =no(T) = D _ xicxs;.
i=1
Furthermore,
e =Mk H ) - Hyl P, 3.5)
and the numbers (x1, ..., xx) are uniquely determined by this equation.

We consider two reduced decompositions
W=5]...5p, w=s...8
of w.Leti=(s1,...,sp) and j=(s],..., s;,). Let :[0, T] — V be a continuous path such that
n(0) =0, and let (x1, ..., xp), respectively (y1, ..., yp), be the numbers determined by Eq. (3.5)
for the two decompositions i and j. The following theorem states that the correspondence be-

tween the x,,’s and the y,’s actually does not depend on the path . In other words, we have the
following braid relation for the operators H:

HeP ... H2H = Hf/’ . Hfjﬁzi' (3.6)
4

Sp

Theorem 3.12. There exists a piecewise linear continuous map ¢f :R? — R? such that for all
paths n € C(%(V),

Ols oo s Yp) =B (X1, o, Xp).
Proof.

First step. If the roots o, B generate a system of type A1 x A and w = s45g = 58S, then Py
and Pg commute, and it is immediate that x; = y», xo = yi. Let «, a” and B, BY be such that

a’(@)=p"(p) =2, a’(B)=p"()=~1,
then o and § generate a root system of type A, and the braid relation is

W0 = SaSBSq = SESaSp.
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Define
a A b=min(a, b), a Vv b=max(a,b).

We prove that the following map

x1=(2—Yy1)AYy3, yi = (x2 —Xx1) A X3,
X2 =y1+y3, y2 =x1 + x3,
x3=y1V(Q2—y3), y3=x1V (x2 —x3) (3.7)

satisfies the required properties. Assume that, for 7 =Py, n,
="M HgHy 7.

Then define 1y = Pun, n1 = PpPun, no = 7 = Py PgPyn. Using Theorem 3.5 for computing
the paths n; one gets the explicit formulas:

WL )
xx=—_inf _(BY(n(s1)+a”(n(s2)),

0<s2<s1<T

"= _0<s2i2£1<7(“v(’7(51)) + 87 (n(s2)) —x3.

Similar formulas are obtained for the y; coming from the other reduced decomposition, by ex-
changing the roles of « and B. The formula (3.7) follows by inspection.

In the context of crystals, this result is well known and first appeared in Lusztig [25] and
Kashiwara [20]. We observe that it can also be obtained from the considerations of Section 6,
see, e.g. Section 6.7.

Second step. When the roots generate a root system of type A, using Matsumoto’s lemma, one
can pass from one reduced decomposition to another by a sequence of braid relations correspond-
ing to the two cases of the first step.

Third step. We consider now the case where the roots generate the dihedral group [ (m), and
W =58486 ... =SSy ... is the longest element in W. We will use an embedding of the dihedral
group I (m) in the Weyl group of the system A, _1, see e.g. Bourbaki [4, Ch. V, 6, Lemme 2].
Recall the Tchebycheff polynomials 7} defined in (3.2). Let A = cos(2w/m), a; = a; = 1 and,
fork>1,

ax =Tr—1(2), ak+1 =T (A) + Ti—1(A)
then,

@k + A2k+2 = A2k+1, aok+102k—1 + a2ky1 = (1 +az)ay. (3.8)

Moreover a; > 0 when k <m and a,, =0.
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In the Euclidean space V = R™~! we choose simple roots «f,...,o;,;—1 which satisfy
(aj, ) =a;ij where a;; =2ifi = j,a;j = —1if |i — j| = 1, a;; = 0 otherwise. Letocl.v =q; and
s; = Sq;. These generate a root system of type A,,—1.

Let IT be the two-dimensional plane defined as the set of x € V such that for all n < m,

<an,x> :al’l(alvx)
if n is odd, and
<ansx) :an<a27x>

if n is even. It follows from the relation (3.8) that the vectors

o= Z anplp, B= Z an,ay,

n odd, n<m n even, n<m

are in I1. Let ¥ = 2a/ |||, BY =2B/||B||* and
Tl = 815355...82p—1,
T) = 8285456 ...52r,

where 2p =m — 1,r = p whenm isodd and 2p =m,r = p — 1 when m is even. Let wg be the
longest element in the Weyl group of A,,_1. Its length is ¢ = (m — 1)m /2. We first consider the
case where m is odd, m =2p + 1, g = pm. Then

wo = (112)P71, and wo=1n2(1112)”
are two reduced decompositions of wy. Since (t172)™ = Id the angle between o and — is 7 /m

and these vectors are the simple roots of the dihedral system 1 (m).
Let y be a continuous path in 7, let y, = y and for 1 < k < p, Yk—1 = Pay,_, ¥k and

=— inf ay .
Zk (1) Ogsl<[a2k_1(yk(s))

XX

Lemma 3.13. Let y be a continuous path with values in IT and let

__ v
x(t) = 0énf< a¥ (v ().

ISR

Then, for all k, 7y (t) = ax—1x(t) and

Pr,y (1) = Po; Pay Pas - - Pay, ¥ (1) = y (1) — Sigftav(y(S))a = Poy (1).

Proof. First, notice that " (y (1)) = ) (y (t)). Since y is in IT, one has

zp(t) =— inf azvpfl(y(s)) =— inf axp_ja) (y(s)) =azp—1x(1)
0<s<t 0<s<t
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where we use the positivity of a;,—1. Therefore

Yp—1(t) = Poy, ¥ (1) =y (@) + zp(O)azp—1 =y (1) + azp—1x(H)azp—1.
Now, since the ;4 are orthogonal,
Zp-1(t) =— Ogirslfgtazvp_3(yp—l(s)) =— Ogilslfgtazv,,_g(y(S)) = azp-3x(1),
and
Yp—2(t) = Pazp_3 Yp—1(0) = yp—1() + zp—1(H)2p—3
=y @) +x@)(azp-302p-3 + a2p—102p—1).
Continuing, we obtain that
2k (1) = anr—1x(1),

V() =y @) +x(@)(azk—100k—1 + - + a2p—122p—1).

Since @ = ay + azaz +asas + - - - +azp—_102p—1 We obtain the lemma. O
We have similarly, if y is a path in [T,

Pryy (1) = Poy Pay Pt - - - Py, v (1) = y (1) — Yir<1ftﬂv(y(8))ﬂ =Ppy ).

Leti= (s,-l,...,sl-q) = (i,iz,...,iy) and j = (sjl,...,sjq) = (J1,j2,-.-,jm) where i =
Jk+1 = (51,83, ...,82p—1) when k is odd and iy = ji+1 = (52,54, ...,52p) when k is even. We
write explicitly

wo = (12)’ 11 = Siy .- i, » wo =n(112)” =5j, ...5j,-

Let us denote by ¢§ :R? — RY the mapping given by the second step corresponding to these two
reduced decompositions of wy in the Weyl group of A,,_1.

Let y be a path with values in I1. If we consider it as a path in V we can set n, =7, = y and,
forn=1,2,...,q,

—1="Pu, N, =— inf o’ (n. (1)),
Nn—1 aj, n Zn ocrer in (nn( ))
. - - v [~
iin-1 = Pay,iin: - In=— inf e (in(0).

Then, by definition,

(21,...,Zq)=¢g(zly-..,Zq).
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We now consider y as a path in I7. We let
(ulvuZS "'1um) = (a7ﬁ9a7/33"'9a)
and

(i, va, ..., =B, a,B,a,...,B).

In I (m) the two reduced decompositions of the longest element are

Sup Sy = Spp - Suy-
We introduce y,, =y, =y, and, forn=1,2,...,m,
Yn—1 ZPu,l-nPumea Vn—1 van"‘PUm);ma
x, =— inf w’(y,@®)), X, =— inf v (9,0)).
n 0<r<T n()’n( )) n 0<r<T n(yn())

It follows from Lemma 3.13 and from its analogue with « replaced by g that
71 =ayxy, 2=4azxy, ..., ZIp=Aap-1X1,
Iprl =a2X2,  Zpi2 =Q4X2, ..., Z22p =a2pX2,
and more generally, for k =0, ...

-1 -1 —1
Ay 2kp+1 =43z Wkp+2 = = Ay, 1 Wkp+p = Xk+1,

—1 —1 —1
Ay ZQk+1)p+1 =y ZQk+D)p+2 =" =y, ZQ2k+2)p = Xk+2-
This defines a linear map
(x15 "'5x}n)=g(zl7Z27"-7Zq)'

Analogously exchanging the role of « and 8 we define a similar map

('il’ "'7im) zg(zleZa "'azq)
(for instance 7| = apX1, 22 = asXxy, ...). Then we see that
(1 s X)) =@ (X1, ooy X))

where g =g o ¢ii o g~!. The proof when m is even is similar (when m = 2p, wo = (1172)” and
wo = (1271)P are two reduced decompositions of wy). This proves the theorem in the dihedral
case.

Fourth step. We use Matsumoto’s lemma to reduce the general case to the dihedral case.

This ends the proof of Theorem 3.12. O
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Remark 3.14. Although the given proof is constructive, it gives a complicated expression for

qbg which can sometimes be simplified. In the dihedral case I (m), for the Weyl group case, i.e.
m = 3,4, 6, these expressions are given in Littelmann [24]. For m =5 it can be shown by a
tedious verification that it is given when ¢, 8 have the same length, by a similar formula. Thus
form=2,3,4,5,6letco=1,c; =2cos(w/m), cp+1 + cn—1 =cic, forn >0, and

u =max(CiXg4+1 — Ck—1Xk42, 0 <k <m —3),
<k <

U = min(CgXg42 — Ck41Xk+1, 1 m—2).

Then the expressions are given by

Ym =max(X,;—1 — C1Xm, U),
Ym—1 =X + max(x,;—2 — C2Xpm, C11),
Y2 =x1 +min(x3 — c2x1, C1V),

y1 =min(x — c1x1, v)

and
Vi+y3z+-o=x2+x4+-,
2tyst-o=xptazt.
This determines completely (y1, ..., y») as a function of (xy, ..., x,) when m < 6. Form =7

we think (and made a computer check) that we have to add that

¥7 + ¥5 = X + max(c2x1, X4 — €3x7, W),

w = min(czu, X4 — cov, max(xg — c1X5 + X4 + cou, C1X3 — X3 — czv)).
‘We do not know of similar formulas for m > 8.

Remark 3.15. The map given by Theorem 3.12 is unique on the set of all possible coordinates
of paths. We will see in the next section that this set is a convex cone. Since the value of the map

¢>§ is irrelevant outside this cone, we may say that there exists a unique such map for each pair of

reduced decompositions i, j.
4. Parametrization of the continuous Littelmann module

In this section we make a more in-depth study of the parametrization of the Littelmann mod-
ules, and we prove the analogue of the independence theorem of Littelmann (the crystal structure
depends only on the endpoint of the dominant path), then we study the concatenation of paths,
using it to prove existence and uniqueness of families of crystals. Finally we define the action of
the Coxeter group on the crystal, and the Schiitzenberger involution.
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4.1. String parametrization of C% (V)

Let (W, S, V,VY) be a realization of the Coxeter system (W, S). From now on we assume
that W is finite, with longest element wg. For notational convenience, we sometimes write o ¥'n
instead of V().

Let n € Ly, where 7 is dominant and wo = s ...s; be a reduced decomposition, then we
have seen that

n= H;CZHXII—I .. 'H;CIIJT

Sg—1

for a unique sequence

0i(n) = (x1,...,Xg).

Following Berenstein and Zelevinsky [2], we call gj(n) the i-string parametrization of 7, or the
string parametrization if no confusion is possible.
We let

Ciﬂ = Qi(l‘ﬂ)y

this is the set of all the (x1,...,x4) € R? which occur in the string parametrizations of the
elements of L.

Proposition 4.1. The set Ly, is compact and the map o is a bicontinuous bijection from Ly onto
its image C{".

Proof. The map oj has an inverse
—1 _ Xq Xq7] X1
0 (x1,...,xq) =Hy, Hs, | - -Him,

hence it is bijective. It is clear that o; and o; ! are continuous. Since Puy, 1s continuous, L, =

{n; Pwy(n) =m}is closed. Using o; 'we easily see that L, is equicontinuous, it is thus compact
by Ascoli’s theorem. O

We will study C{" in detail in the following sections.
4.2. The crystallographic case

In this subsection we consider the case of a Weyl group W with a crystallographic root system.
When « is a root and " its coroot, then &) and £;! from Definition 3.3 coincide with the
Littelmann operators e, and f,, defined in [23]. Recall that a path 7 is called integral in [23]
if its endpoint n(T) is in the weight lattice and if, for each simple root «, the minimum of the
function aV (n(¢)) over [0, T'] is an integer. The class of integral paths is invariant under the
Littelmann operators.

Let 7 be a dominant integral path. The discrete Littelmann module D, is defined as the orbit
of 7 under the semigroup generated by all the transformations ey, fy, for all simple roots o, so
it is the set of integral paths in L.
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Let i = (sy,...,5;) where wop =s;...54 is a reduced decomposition, then it follows from
Littelmann’s theory that

D, ={neLy; xl,...,xqEN}:Qi_l({(xl,...,xq)eCi”; xleN,...,xqu}).

Furthermore, the set D, has a crystal structure isomorphic to the Kashiwara crystal associated
with the highest weight 7(T). On D, the coordinates (x1, ..., x,) are called the string or the
Kashiwara parametrization of the dual canonical basis. They are described in Littelmann [24]
and Berenstein and Zelevinsky [2].

When restricted to Dy, the Pitman operator P, coincides with e
n to ey n, where n = max(k, ef;n #0).

For any path n:[0,7] — V and A > 0O let An be the path defined by (An)(¢) = An(¢) for
0 <t < T. The following results are immediate.

max

o, 1.e. the operator sending

Proposition 4.2 (Scaling property).

(i) Forany A >0, ALy = L.

(ii) Let n € CA(V), r e R,u >0, then EL* (un) = u&l,(n).
(iii) Let m be a dominant path and a > 0 then C{'" = aC{'.
Proposition 4.3. If v is a dominant integral path, then the set

Dy (Q) = U %Dnn

neN
is dense in L.

Actually a good interpretation of L, in the Weyl group case is as the “limit” of %Bnﬂ when
n — oo. In the general Coxeter case only the limiting object is defined.

4.3. Polyhedral nature of the continuous crystal for a Weyl group

Let W be a finite Weyl group, associated to a crystallographic root system. Let D, be the
discrete Littelmann module associated with an integral dominant path 7. We fix a reduced de-
composition wo = s ..., of the longest element and let i = (sy, ..., s;). We have seen that if
pi: Ly — Ci” is the string parametrization of the continuous module L, then

Dy ={neLly; x1,...,%4 eN}:gi_l({(xl,...,xq)eCi”; xreN, ..., x EN}).
Therefore the set

CT =CF NN
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is the image of the discrete Littelmann module D;, or equivalently, the image of the Kashi-
wara crystal with highest weight 7 (T'), under the string parametrization of Littelmann [24] and
Berenstein and Zelevinsky [2]. Let

r—1
Ky =1{(x1,...,x4) €RY; ngrgaivr(n(T)—Zx”ain), r= 1,...,q}.
n=1

It is shown in Littelmann [24] that there exists a convex rational polyhedral cone Cj in RY,
depending only on i such that, for all dominant integral paths 7,

Cr =GiNNY N K.

This cone is described explicitly in Berenstein and Zelevinsky [2]. Recall that Ci” = o0i(Ly).
Using Propositions 4.2, 4.3 it is easy to see that the following holds.

Proposition 4.4. For all dominant paths 7, C' = Ci N K.
4.4. The cone in the general case
We now consider a general Coxeter system (W, S), with W finite, realized in V.

Theorem 4.5. Let i be a reduced decomposition of wo, then there exists a unique polyhedral cone
Cj in R? such that for any dominant path w

Cin =CiNnkKy.
In particular C{" depends only on A =t (T).
Proof. It remains to consider the non-crystallographic Coxeter systems. It is clearly enough to
consider reduced systems. We use their classification: W is either a dihedral group I (m) or H3
or Hy (see Humphreys [16]), and the same trick as the one used in the proof of Theorem 3.12.
We first consider the case I (m) where m = 2p + 1 and we use the notation of the proof of
Theorem 3.12. Let i = (i, ..., iy) be as in that proof, and write

wo = (1)’ 11 =83, ... 85,

for the longest word in A,,—1. Let y be a path with values in the plane 1. If we consider y as a
pathin V = R™~! we can set, for g=m—1m/2,n; =y and, forn=1,2,...,q,

_1="Py N, =— inf o 1)).
NMn—1 aj, n Zn oer<T Zn(rln( ))

We can also consider y as a path in [, with the realization of / (m). Let

u=u,u,....,um) =@, B,a,pB,...,a).
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Letn, =y and, forn=1,2,...,m,

Mn-1="Pu, ... P , =— inf u’ 1)).
Nn—1 Uy wm Nm Xn Oglth”n (nn( ))

We have seen that the map

(-xla"'axm):g(Z19Z23~~~»Z ),
q

is linear. Let Cj be the cone associated with i in A,,_1, then Cy = g(Cj) is the cone in R™
associated with the reduced decomposition «f ...« of the longest word in 7 (m). Furthermore,
for any dominant path  in I7T, C] = Cy N K.

The proof when m is even is similar.

In order to deal with the cases H3 and Hy it is enough, using an analogous proof to embed
these systems in some Weyl groups.

Let us first consider the case of Hs. We use the embedding of Hy in Eg (see [26]). Consider
the following indexation of the simple roots of the system Eg:

O )
1 2 3 4 6 7 8
System Eg
In the Euclidean space V = R® the roots ai, ..., o, satisfy {(o;,aj) = —1 or O depending

whether they are linked or not. Let ¢ = (1 + +/5)/2. We consider the 4-dimensional subspace IT
of V defined as the set of x € V orthogonal to og — ¢o1, 7 — pop, g — Pz and pas — aa. Let
s; be the reflection which corresponds to «; and
T] = 5158, T2 = $257, T3 = $356, T4 = 5455.
One checks easily that 11, 72, 73, T4 generate Hy and that the vectors
a) =y + ¢as, a) =a + ¢ay, a3 = a3 + Pos, ay=as+¢ 'as

are in [1. If r is a continuous path in I7, then, fori =1, ..., 4, if &l.v =a;/Q2|la; ||2),

Pum(t)=n(t) — inf &' (w(s))&:.
0<s <t

The case of Hsz is similar by using De:

Ne)

2 3 4

O

System Dg



1542 P. Biane et al. / Advances in Mathematics 221 (2009) 1522—1583

In V = R® we choose the roots ai,...,ae with (o, oj) = —1 if they are linked. We define a
3-dimensional subspace [T defined as the set of x € V orthogonal to a5 — ¢aq, o4 — ¢par and
¢ae — a3. Then the reflections
T = $1Ss, T = 52584, T3 = 356, 4.1)
generate H3 and
a) =oy +aas, ay =an + aoy, az = a3 + bag

areinI1. 0O

We will prove in Corollary 5.3 that the cones Cj have the following description: for any simple
root «, let j(o) be a reduced decomposition of wg which begins by s,. Then

Ci={x e RY; ¢>ij(“) (x)1 =0, for all simple roots o}.
4.5. The cone in the dihedral case

In this section we provide explicit equations for the cone, in the dihedral case, following the
approach of Littelmann [24] in the Weyl group case.

Lemma 4.6. Let a, B € V, a”,BY € VY and ¢ = —BY (). Consider a continuous path n €
C(V) and w = Pyn. Let

=~

I
ﬂ
VE

=

2O[aﬁv(n(t)) + btglsigoav(n(s))],

V= min [a min Y(7() + (ac —b)a’ (x(1))]

t2s2

_ : \ _ _ : \
W=a min g7(n(n) ~(ac—b) min o”(n().

where a, b are real numbers such that a > 0,ac — b > 0. Then U = min(V, W).

Proof. Since m = Py,

BY (n) =B (7)) —c ;nigoav(n(s)),

t2s2>

thus

U= Tgltigo[aﬂv(n(t)) + (b —ac) tgligoav(n(s)):l

=282

- . v b . v ]
Tgltlgo[tglslgoaﬁ (n(s)) + ( ac)tglslgoa (n(s))
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where we have used the fact that, if f, g:[0, T] — R are two continuous functions, and if g is
nondecreasing, then

min [f(t) + g(t)] = min [ minof(s) + g(t)].

T>2t>0 T>2t>0Lt>s5>
Since o (7 (1)) = —min; >0 " (1(s)),

migoaﬁv(n(s)) + (ac —b)a” (7 (1)) > tglsigoaﬁv(n(s)) — (ac —b) glsigoav(n(s)).

1252 R

Let 7y be the largest + < T where the minimum of the right-hand side is achieved. Suppose that
to < T.If «¥(rw(tg)) > —ming>s>0a (n(s)) then min,> >0 (1(s)) is locally constant on
the right of 7y. Since min;>;>0aB" (7 (s)) is nonincreasing, it follows that 7 is not maximal.
Therefore, when 19 < T,

aY(n(10)) =— I;lir;oav(n(s))

nzs2

and

U= mi [ in aB” —(ac—b) inf o ]:vgw.
,min ,%‘o“ﬂ (m(s)) — (ac )1211512006 (n(s))

Whentyo=T,then U =W < V. Thus U =min(V, W). O

We consider a realization of the dihedral system I (m) with two simple roots «, § and ¢ :=
—aV(B)=—p"(a) =2cos .. Let

__sin(nz/m)
"7 sin(r/m)

Then ap =0, a; =1, and ay41 +ap—1 =cap, ap >0if 1 <n<m—1 and a, =0. Let
wo = S1 ...S, be areduced decomposition of the longest element wg € W, i= (s, ..., s,) and
af, ..., 0y, be the simple roots associated with s, ..., s,,. This sequence is either (o, 8, , ...)
or (B, «, B, ...). Clearly the two roots play a symmetric role, and the cones associated with these
two decompositions are the same. We define o as the simple root not equal to «;. As before,
when n € C?(V), we define n,, =nand fork =0,...,m — 1, ne =Py, ... Py, 1, and

: Vv
Xy =— min « t fork=1,...,m.
k 0I<T k(ﬁk())

Proposition 4.7. The cone for the dihedral system I (m) is given by

Xm— Xm— X
Ci:{(X1,...,xm)€R’”;m—l> = 2>-">_1}'

=
am—1 am—-2 ai

Proof. Forany p,k suchthat 0 < p <m,0 <k < p, let
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VkZTI;UnO[akHOl 1Mok () + a gllgoap _e(np— k(S))]

Wi =ay Tgltigoa;;/_k(ﬂpfk (1)) — ax+1 Tr;ltigoa,z+1_k(77p+lfk 0)).
Since ag—1 + ax+1 = cag, the lemma above gives that Vy = min(Wj1, Vi41). Therefore
Vo =min(Wy, Wy, ..., Wp, V[,).
Notice that

Vp= Tgltigol:ap+1051 (n0(®) +ap min g (no(S))]

and W), = ap11x since 19 = Py, is dominant. Furthermore

Vo= OE}IQT oy (1p (1)

since agp = 0 and a; = 1. Hence,

OI<I}1£TO[”+1()7PU)) =min(axp —a1xXp—1,...,dpX2 — dp_1X1,dp+1X1, 0). “4.2)

The path 7,—1 = Py, 1 iS &y -dominant, therefore o, (,,—1(¢)) = 0 and it follows from (4.2)
applied with p =m — 1 thatfork=1,...,m —2

Am—kXk41 — Am—k—1Xk = 0,

which is equivalent, since a,,—x = ai to

Xm—1 Xm—2 X1

= Z-2—20
am—1 am—2 aj
Conversely, we suppose that these inequalities hold, i.e. that fork =1,...,m — 2

Ak 1Xm—k — AkXm—k—1 = 0,

Am—kXk+1 — Am—k—1Xk = 0, 4.3)
and that (x1, ..., x;,) € K, for some dominant path . Let us show that
Xm X
=Hy - ‘Hozllff

is well defined. Since the string parametrization of 7 is x this will prove the proposition. It is
enough to show, by induction on p =0, ..., m that

w3 K-l X1
np:i= HapHapfl "‘Hm”
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is ap41-dominant. This is clear for p = 0 since 79 = 7 is dominant. If we suppose that this is
true until p — 1 can apply (4.2) and write that

min a;H(np(t)) =min(axp, —a1Xp_1,...,apX2 — dp_1X1,dp4+1X1, 0).
0<I<T

Since ¢ < 2, it is easy to see that

an—1 an—-2
=
an an—1

for n < m — 1. Therefore,

X Am—k— Ap—fk
k+1 > m—k—1 > P
Xk Am—k Ap—k+1

and a;/H(n,,(t)) >0forall0<tr<T. O

In the definition of Vj and W; in the proof above, replace the sequence (ax) by the sequence
(ax+1). We obtain the following formula.

Proposition 4.8. If y,, = —minr>;>0a, _; (1x(t)), then
Ym = max{0, am—1Xm—1 — Am—2Xm, Am—2Xm—2 — Am—3Xm—1, - - ., A2X2 — A1X3, A1 X1}.
4.6. Remark on Gelfand-Tsetlin cones

In the Weyl group case, the continuous cone Cj appears in the description of toric degenera-
tions (see Caldero [5], Alexeev and Brion [1]). The polytopes C;" are called the string polytopes
in Alexeev and Brion [1]. Notice that they have shown that the classical Duistermaat—Heckman
measure coincides with the one given below in Definition 5.4. Explicit inequalities for the string
cone Cj (and therefore for the string polytopes) in the Weyl group case are given in full generality
in Berenstein and Zelevinsky in [2, Thm. 3.12]. Before, Littelmann [24, Thm. 4.2] has described
it for the so called “nice decompositions” of wg. As explained in that paper they were introduced
to generalize the Gelfand—Tsetlin cones.

For the convenience of the reader let us reproduce the description Cj in the A, case, consid-
ered explicitly in Alexeev and Brion [1], for the standard reduced decomposition of the longest
element in the symmetric group W = S,,41. This decomposition i is

wo = (51)(5251)(535251) . .. (S Sp—1...51),

where s; denotes the transposition exchanging i with i + 1. Let us use on V' the coordinates x; ;
withi, j > 1,i 4+ j <n+ 1. The string cone is defined by

Xp120; xp_122x0-1120; .. xppz--2x11 20,
and to define the polyhedron C;" one has to add the inequalities

i1
Xij <of (W) = xij-1+ Z(_xk,j—l +2xp,j — Xk, j+1)
k=1
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where A = 7 (T'). A more familiar description of this cone is in terms of Gelfand—Tsetlin patterns:
8i.j Z 8i+l,j = &i,j+1

where goj=Aj and g j = A+ Yk (k. j—1 —xx.j) fori, j > 1,i+j<n+1.

4.7. Crystal structure of the Littelmann module

We now return to the general case of a finite Coxeter group. Let 7 be a dominant path in
C 2 (V). The geometry of the crystal Ly is easy to describe, using the sets C;" which parametrize
Ly . We have seen (Theorem 4.5) that C' depend on the path 7 only through 7 (7). We put on
Ci” a continuous crystal structure in the following way. Leti= (s1, ..., s;) where wo =s1...5,4
is a reduced decomposition. If x = (x1,...,x4) € Ci” we set

q
wi(x) =m(T) = Y xicty,.
k=1

If the simple root « is «, then first define ef, ; for r € R by
ni(X1, %2, ..., Xg) = (x1+7,x2,..., %) or 0
depending whether (x| +7, ..., x,) isin C{" or not. We let, for b € C7",
ca(b) = Inax{r >0; ey ;(b) # 0}
and

9o (b) = max{r > 0; e, (b) # 0}.

We now consider the case where « is not 1. We choose a reduced decomposition wg = s; sé el s(/]

with ay = and let j = (s, 55, ..., s(’l). We can define egl’j on CJ?’, £q, Qo as above, and transport

this action on C" by the piecewise linear map q)ii introduced in Theorem 3.12. In other words,

Foo_ r i
eyi= qbi °e€y; o¢j.

Finally we define the crystal operators by e, = e/ ;. Then p; : Ly — C{' is an isomorphism of
crystal. This first shows that our construction does not depend on the chosen decompositions
wo = 5155 ... 5, and then that the crystal structure on Ly depends only on the extremity 7 (7) of
the path :

Theorem 4.9. If m and 7 are two dominant paths such that w(T) = 7 (T) then the crystals on
L, and L3 are isomorphic.

This is the analogue of Littelmann independence theorem (see [23]).

Definition 4.10. When W is finite, for A € C, we denote B()) the class of the continuous crystals
isomorphic to L, where 7 is a dominant path such that 7 (7) = X.
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4.8. Concatenation and closed crystals

The concatenation w * 1 of two paths 7 :[0,7T] — V, n:[0,T] — V is defined in Littel-
mann [23] as the path w x1:[0, T] — V given by (7 * n)(¢) =7 (2t), and (w xn)(t + T/2) =
7w (T) + n(2t) when 0 < ¢ < T/2. The following theorem is instrumental to prove uniqueness.

Theorem 4.11. The map
O:CLUV)®CU(V) — CU(V)
defined by ® (n1 ® n2) = n1 * 02 is a crystal isomorphism.
Proof. We have to show that, for simple roots «, for 1 € Ly,, m2 € Ly,, forall s € R,

Oley,(m @ )] =&y (1 *m2).

This is a purely one-dimensional statement, which uses only one root, hence it follows from the
similar fact for Littelmann and Kashiwara crystals. For the convenience of the reader we provide
a proof. For any x > 0, let

Pin)=n@) — min(O, X+ 0<inf< ocvn(s)>oz.

<s<
Thus, for y = (—infocs<r ¥ n(s) —x) VO,
Pin==Eln. 4.4)
Lemma 4.12. Let 1,12 € C(%(V), then

(i) Pu(n1*m) = Pani * Pyna where x = o n1(T) — infoc, <7 V1 (2);
(i) ifx 20, PoP} = Paos
(iii) if x >0, y € [0, 7 (T)), and 7 be an a-dominant path, 'PéHZTL’ = ’HéAyn.

Proof. Forall 7 € [0, T /2], Py(n1 * n2)(t) = Pyn1(¢). Furthermore,

Po (1 %) ((T +1)/2)

= Tt2—'['fV,VT'fv]
(m *m)((T +1)/2) — min oé?gr“ n1(s), " ni( )+0i2§ o na(s) |a
=n(T)— inf oV
ni(T) Ogﬁlg“ ni(s)a
+n2(t)—min[o, inf aVna(s)+aVn(T) — inf ozvm(s)]oz
0<s< 0<s<T

X IIX

=Pani(T) + Pyna(1).

This proves (i), and (ii) follows from (4.4). Furthermore, infog <7 oV (Hym(s)) = —y, therefore
(iii) follows also from (4.4). O
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Proposition 4.13. Let w1, my be a-dominant paths, x € [0,aV71(T)], y € [0,aVm2(T)], z =
min(y,a¥m(T) —x) andr =x + y — z, then

Hymy > Hymo = Hy, (1 * HSm2).
Proof. Lets = oV (HLmi(T)) — infoc, <7 ¥ (HLm1)(7). By Lemma 4.12:
Po(Hymi * Hym2) = Po (Hym1) * Py (Hym2)
and PSHymy = Hy 2. Since Py’ M = 71 one has
Py (Hgm * Hglrrz) =m *H) ).
Notice that s = «V (7r1(T)) — x. On the other hand,
(Hym » Hymo)(T) = Hym(T) + Hymo(T) =71 (T) + m2(T) — (x + y)ev,
(1 * HYY o) (T) = 71 (T) + m2(T) — (s A Y)ex

and we know that n = H[, 7 is characterized by the properties Pon =7 and n(T) =n(T) — ra.
Therefore the proposition holds forr +s Ay=x+y. O

We now prove that, fora € X, n1 € Ly, n2 € Ly,, forall s e R,
Oley(n @ )] =E,(m *m).
Since eXe!, = €5t and E5E. = E3T it is sufficient to check this for s near 0. We write n; =
Him and ny = Hymy where 1 = Pu(n1), 72 = Py(172) are a-dominant. By Proposition 4.13,
if z=min(y,a"7m(T) —x) and r =x + y — z, then
Es(m *m2) = E (Hym *» Hyma) = EyHY (1 * Hm2).
We first show that if

Eamixn) =0 4.5)

then e}, (n1 ® n2) = 0. For |s| small enough (4.5) holds only when » =0 and s > 0 or when s <0
and

r=a"((m *Him)(T)) =71 (T) + o' mo(T) — 2z. (4.6
If r =0, then z =min(y,a”7m(T) —x) =x + y hence x =0 and y < a7 (T). But
(M ® ) = £4(n1) — min(@e (11) — €4 (12), 0) =max(2x +y —a 71 (T), x)

(notice that, in general, when 7 is a-dominant, & (H37) = x and ¢o (Him) = «”7(T) — x).
Therefore £, (71 ® 12) =0 and €, (11 ® n2) = 0. Now, if  is given by (4.6), then

z=a"m(T) —x +a"m(T) - y
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since r = x + y — z. We know that a¥7(T) — y > 0, hence z = min(y, V71 (T) — x) only if

z=a'm(T) — x, aVm(T) =y, y>aVm(T) —x.
Then

ea(m @ M) =2x +y —a’'m(T).

On the other hand,

wt(m ® m2) = wt(n1) +wi(n2) = m1(T) — xa + m2(T) — ya,
thus, using y = oVmp(T),

Pa(M1 @ M2) = €a(m @ m2) + " (Wi ® m2)) =0

and e}, (11 ® n2) =0 when s < 0.
We now consider the case where (4.5) does not hold. Then for s small enough,

Ey(m *m2) = EyHy, (m1 % Hma) = Hy ™ (1 HE ).
Using Proposition 4.13, if s is small enough, and y > oV (T) — x, then
LS (1w Hma) = H s Hmy = O (el (Hym ® Hym)
and if y < a¥m(T) — x, then
Hy (1« Hym) = Hym » HY mp = O (e, (Hym @ Hym)).
The end of the proof is straightforward. O

By Theorem 4.9, this proves that the family of crystals B(1), A € C is closed. From Theo-
rems 3.11 and 2.6, we get

Theorem 4.14. When W is a finite Coxeter group, there exists one and only one closed family of
highest weight normal continuous crystals B(A), A € C.

4.9. Action of W on the Littelmann crystal
Following Kashiwara [20,21] and Littelmann [23], we show that we can define an action of
the Coxeter group on each crystal L, . We first notice that for each simple root o, we can define
an involution S, on the set of paths by
Sen=E4n forx =—a"(n(T)).

In particular,

San(T) = 5o (n(T)). (4.7)
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Lemma 4.15. Let n € C(T)(V) and a € X such that oV (n(T)) < 0. For each y € C(T)(V) there
exists m € N such that, for alln > 0,

Po(y #1*") = P (y * 0™™) » S ()™
Proof. By Lemma 4.12,
Py + 1" F) = Po(y *0*™) » Py ()
where

x=a"(y*xn”")(T) - 01<n‘iETav(y * ") (s).

I

Let Ymin = minggs<7 @y (s) and nmin = minggo<r oV n(s). Since ¥y (T) < 0, there exists
m > 0 such that for n > m one has,

min av(y * n*")(s) = min(yminv av(V(T) + k’?(T)) + Nmin; 0<k<n— 1)
0<s<T

=a"(y(T) + (n — Dn(T)) + Nmin.

Using that (y x 7" )(T) = y(T) + mn(T) we have x = a”'n(T) — Nmin. In this case, P; (n) =
S« (1), which proves the lemma by inductiononn >m. 0O

Theorem 4.16. There is an action {S,,, w € W} of the Coxeter group W on each L such that
S5y = Sa When o is a simple root.

Proof. By Matsumoto’s lemma, it suffices to prove that the transformations S, satisfy to the
braid relations. Therefore we can assume that W is a dihedral group /(g). Consider two roots
o, B generating W. Let n be a path, there exists a sequence (¢;) =, 8, «, ... 0or B,a, B, ... such
that sy, S, - .. S, N(T) € —C.Let N =Sa;Sa, - --Sa, 1. Let Sag - - Sauy be areduced decomposition.
We show by induction on k < ¢ that there exists my > 0 and a path y, such that

Py« - Py (™) = e+ (S - - Sery ™. (4.8)
For k = 1, this is the preceding lemma. Suppose that this holds for some k. Then
a1 (Sey - Say 1(T)) <0
(cf. Bourbaki [4, Ch. 5, No. 4, Thm. 1]). Thus, by the lemma, there exists m such that, for n > 0,
Pasr (Vi * Sag -+ Sy ) =Py (Ve * (S -+ Sery ™) % (Sasy Seg - - - Sy ™
Hence, by the induction hypothesis, if yx41 = Poy,, (Vi * (S - - - Sey 1)™™), then
Pases Pay -+ - Pay (™) = e 11 % (S Sty - - - Seey D™

We apply (4.8) with k = ¢, then there exists two reduced decompositions, and we see that
So ’ SO[(F1 ... Sg, 77 does not depend on the reduced decomposition because the left-hand side does
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not, by the braid relations for the P,. This implies easily that Saq Sa - ... Sq 1 also does not
depend on the reduced decomposition. O

Using the crystal isomorphism between L, and the crystal B(w (7)) we see that

Corollary 4.17. The Coxeter group W acts on each crystal B()), where ) € C, in such a way
that, for s = s, in S, and b € B(}L),

Se(b) =€y (b), where x = —a" (wir(b)).
Notice that these S, are not crystal morphisms.
4.10. Schiitzenberger involution

The classical Schiitzenberger involution associates to a Young tableau 7 another Young
tableau 7' of the same shape. If (P, Q) is the pair associated by Robinson—-Schensted—Knuth
(RSK) algorithm to the word u ...u, in the letters 1, ..., k, then (f’, Q) is the pair associated
with uy .. .u} where i* =k + 1 — i, see, e.g., Fulton [9]. It is remarkable that P depends only
on P, and that O depends only on Q. We will establish an analogous property for the analogue of
the Schiitzenberger involution defined in [3] for finite Coxeter groups. The crystallographic case
has been recently investigated by Henriques and Kamnitzer [13,14], and Morier-Genoud [27].

For any path € Cg(V), letkn()=n(T —t) —n(T),0<t < T, and

Sn = —wokn.
Since w(z) =id, § is an involution of Cg(V). The following is proved in [3].
Proposition 4.18. For any n € C(%(V), PuoSn(T) = Puwyn(T).
As remarked in [3], this implies that the transformation on dominant paths
= Im =Py, S

gives the analogue of the Schiitzenberger involution on the Q’s. We will consider the action on
the crystal itself, i.e. the analogue of the Schiitzenberger involution on the P’s. For each dominant
pathm € C g(V) the crystals L, and L, are isomorphic, since w(7T) = Iw(T). Therefore there
is a unique isomorphism J : Ly — Ly, it satisfies J; (;r) = Iw. For each path n € C(T)(V), let
J () = Jz(n), where m = P,,,n. This defines an involutive isomorphism of crystal J : C 9 V) —
Cg (V). We will see that

S=JoS

is the analogue of the Schiitzenberger involution on crystals. Although S is not a crystal isomor-
phism, and contrary to S, it conserves the crystal connected components since S(L,) = L, for
each dominant path 7, this is the main reason for introducing it.

If « is a simple root, then & = —wp« is also a simple root and & = —a“ wy. The following
property is straightforward. In the A, case, it was shown by Lascoux, Leclerc and Thibon [22]
and Henriques and Kamnitzer [13] that it characterizes the Schiitzenberger involution.
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Lemma 4.19. For any path 1 in C% (V), any r € R, and any simple root o, one has

ELSn=38&"n,
ea(SM=0a(m),  9a(Sn) =ea(),
Sn(T) = won(T).

An important consequence of this lemma is that S:Ly — Ly depends only on the crys-
tal structure of L. Indeed, if n = 8 5&1;(7[ then S(n) 8&_1” ...gﬁ;’k§ () and S(r) is the
unique element of L, which has the lowest weight wom (T'), namely S,,,7, where S, is given
by Theorem 4.16. In particular, using the isomorphism between L, and B(X) where A = 7 (T),
we can transport the action of S on each B(A), A e C.

Notice that S o J also satisfies to this lemma. Therefore, by uniqueness,

SoJ=JoS
thus S is an involution. Following Henriques and Kamnitzer [14], let us show:

Theorem 4.20. The map t : C(%(V) — C%(V) defined by

(1% m2) = S(Sn2 + Smy)
is an involutive crystal isomorphism.

Proof. Remark first that any path can be written uniquely as the concatenation of two paths,
hence t is well defined, furthermore S(n; x n2) = S(n2) * S(n1), therefore, since S =SJ =JS,
and S is involutive,

T *m) = JS(SImax STn) =JS>(Ini « Jnp) = T (I + Inn).

Consider the map J@® : C(T)(V) — C%(V) defined by J® (51 * 12) = Jn1 * Jn2. Remark that
JO =00 ®J)oO ! where @:Cg(V) ® Cg(V) — C(%(V) is the crystal isomorphism
defined in Theorem 4.11 and (J ® J)(n1 ® n2) = J(n1) & J(12). Since J is an isomorphism,
this implies that J® is an isomorphism, thus 7 = J o J? is an isomorphism.

Let S@ be defined by S(z)(m *12) = S(m2) * S(1). Then 7 = S o S@, and, since § is an
involution, the inverse of 7 is S@ o §. So to prove that 7 is an involution we have to show that
So08® =8@ 5 §. Both these maps are crystal isomorphisms, so it is enough to check that for
any n € C2(V), the two paths (S o S?)(1) and (S@ o 5)() are in the same connected crystal
component. Since S conserves each connected component, 1 and S(n) on the one hand, and
S (2)(17) and S (S (2)(77)) on the other hand, are in the same component. Therefore is it sufficient
to show that if n and p are in the same component then S @ () and §@ () are in the same
component. Let us write n = n1 x n2. Then if u =&, (n), 0 = o (1) — €a(2) and 6 = —0,

~ . _ B _ T~ AV AT~
S(génln(r’_d)+a+n2)=(€& min(r,—o)—o Snzzgénax( r,0)—0 SnZ
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and

S‘(g(;nax(r,_g)_g* o ) — 5(; max(r,—o)+o~ f] 5g1in(fr,f&)+&+ 5'171 ’

therefore
Sv(Z) (1) = Sv(Z) (génax(r,—a)—o_ 1 * Eénin(r,—a)+a+ 7)2)

_ Sv(gorlnin(r,—a)+a+n2) . Sv(gorlnax(r,—o)—a_m)

—r6)—0" & in(—r,—6)+6* &
— g[nax( r,o)—0 Snz*g;mn( r,—o)+o0 S’?l
=& (SmSm)

=&"5@ .

So in this case S@ () and S@ () are in the same component. One concludes easily by induc-
tion. O

We can now define an involution S, on each continuous crystal of the family {B(%), A € C)
by transporting the action of S on C%(V). Let A, u € C.For by € B(\) and by € B(u) let

T (b1 ® b2) = 5, (Sub2 ® 5;b1)
where y € C is such that S,b, ® Sib1 € B(y).
Theorem 4.21. For A, i € C, the map
T B(A) ® B(u) - B(n) ® B(A)
is a crystal isomorphism.
This follows from Theorem 4.20. As in the construction of Henriques and Kamnitzer [13,14]
these isomorphisms do not obey the axioms for a braided monoidal category, but instead we have

that:

(D Tur 0 Th,u = I;
(2) the following diagram commutes:

1®T(u,0
B() ® B(1) ® B(o) —" B() ® B(o) ® B(w)

o ®1 J/ J/ T, (0.1)

B(n) ® B(A) @ B(o) T B(0) ® B(1) @ B(A)

which makes of B(1), A € C, a coboundary category.
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5. The Duistermaat—-Heckman measure and Brownian motion

5.1. In this section, we consider a finite Coxeter group, with a realization in some Euclidean

space V identified with its dual so that, for each root a, oV = ﬁ We will introduce an

analogue, for continuous crystals, of the Duistermaat—-Heckman measure (see [7]), compute its
Laplace transform (the analogue of the Harish-Chandra formula), and study its connections with
Brownian motion.
5.2. Brownian motion and the Pitman transform

Fix a reduced decomposition of the longest word

Wo=S5152...85¢

and leti= (sq, ..., s;). Recall that for any n € C?(V), its string parameters x = (x1,...,Xy) =
0i(n) satisfy

i—1
o<xi<a;<x—2xjas,), i<q. (5.1)

j=1
where A = Py, n(T). For each simple root o choose a reduced decomposition iy = (s‘l", e s;”)
such that s{' = s, and denote the corresponding string parameters gj, (1) by (x{, ..., xg). Using

the map ¢i"” given by Theorem 3.12 we obtain a continuous piecewise linear function llloit ‘RY —
R such that

X =wi(x). (5.2)
Of course
w(x) >0, forallae X. (5.3)
Denote by M; the set of (x, X) € R‘i x C which satisfy the inequalities (5.1) and (5.3), and set
M} ={xeR%: (x,2) € Mi). (5.4)

Let P be a probability measure on C g(V) under which 7 is a standard Brownian motion in V.
We recall the following theorem from [3].

Theorem 5.1. The stochastic process Py,,n is a Brownian motion in V conditioned, in Doob’s
sense, to stay in the Weyl chamber C.

This means that Py, 7 is the h-process of the standard Brownian motion in V killed when it
exits C, for the harmonic function

hoy= [T e’

OlER+
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for A € V, where R, is the set of all positive roots. Let ¢; = 19/ fv e~ I%1P/2t g3 and
k= Cl_l /h()\)zefll)‘llz/2 dh.
c

Theorem 5.2. For (o, )) € M;,
P(oi(n) € do, Puyn(T) €d2) =5 h(We 2T dg dy., (5.5)

The conditional law of 0i(n), given (Pyyn(s), s < T) and Py,n(T) = A, is the normalized
Lebesgue measure on Mi)‘, and the volume of Mi)‘ is k= 'h(}).

This theorem has the following interesting corollary, which gives a new proof of the fact that
the set C; depends only on 7(T'), and is polyhedral.

Corollary 5.3. For any dominant path 7, let A = w(T), then C{" = Mi’\, and
Ci= {x € Ri; Woit(x) >0, foralla € E}.

Proof. Itis clear that C{" is contained in Mi’\ and the theorem implies that C;*, equal by definition
to the set of gi(n) when P,,n = 7, contains Mi)‘. The description of Cj follows, since Cj =
(J{C]", m dominant path}. O

Theorem 5.2 is proved in Section 5.4.
5.3. The Duistermaat—Heckman measure

Let G be a compact semi-simple Lie group with maximal torus 7'. If O, is a coadjoint orbit
of G, corresponding to a dominant regular weight, endowed with its canonical symplectic struc-
ture w, then this maximal torus acts on the symplectic manifold (O, , ®), and the image of the
Liouville measure on O, by the moment map, which takes values in the dual of the Lie algebra
of T, is called the Duistermaat—Heckman measure. It is proved in [1] that this measure is the im-
age of the Lebesgue measure on the Berenstein—Zelevinsky polytope by an affine map. In analogy
with this case, we define for a realization of a finite Coxeter group, the Duistermaat—-Heckman
measure, and prove some properties which generalize the case of crystallographic groups.

Definition 5.4. For any 2 € C, the Duistermaat-Heckman measure mjy,; on V is the image of the
Lebesgue measure on MiA (defined by (5.4)) by the map
q
x:(xl,...,xq)EM{\HA—Zx./ajEV. (5.6)
j=1

In the following, V* denotes the complexification of V.
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Theorem 5.5. The Laplace transform of the Duistermaat—Heckman measure is given, for z € V*,
by

Y wew E(w)elrH
h(z)

/ eV miy (dv) = , (5.7)

Vv

where €(w) is the signature of w € W.
With the notations of Theorem 5.2, the conditional law of n(T), given (Py,n(s),0<s <T)
and Py,n(T) = A, is the probability measure [L)]‘)H = km’\DH/h(k).

Formula (5.7) is the analogue, in our setting of the famous formula of Harish-Chandra [11].
Theorem 5.5 is proved in Section 5.5.

Proposition 5.6. The Duistermaat—Heckman measure m)]SH has a continuous piecewise polyno-
mial density, invariant under W and with support equal to the convex hull co(WL) of WA.

Proof. The measure m)]‘)H is the image by an affine map of the Lebesgue measure on the convex
polytope C* when 7 (T) = A. Therefore it has a piecewise polynomial density and a convex
support. Its Laplace transform is invariant under W so m’\DH itself is invariant under W. The
support S(A) of m’\DH/h(A) is equal to {n(T"); n € L, }. Notice that if n is in L, then when x =
a¥((T)), EXnisin Ly and EXn(T) = sen(T). Starting from 7 (T) = A we thus see that W is
contained in S(1). So co(WA) is contained in S(1). The components of x € Mi” are nonnegative,
therefore co(W 1) contains S(1) N C and, by W-invariance it contains S(}) itself. O

5.4. Proof of Theorem 5.2

First we recall some further path transformations which were introduced in [3]. For any posi-
tive root B € Ry (not necessarily simple), define Qg = Pgsg. Then, for € Cg(V),

QY () =y (1) — [;?goﬁv(lﬂ(t) ~¥()p, T=t>0.

Let wo = s152...54 be a reduced decomposition, and let o; = oy,. Since s Pg = Py, gSq, for
roots « # f3, the following holds

Qwo = Pwow() = Qﬂl e Q,gq,
where 81 = a1, Bi =s1...5i_10;, when i < g. Set ¥, = and, fori <gq,

Vi-1=9p...9p,¥  yi=—_inf Oﬂiv(wi(T) — ¥ (D). (5-8)

T>t>

Then yg = Qu, ¥ and, for eachi < ¢,

Quo ¥ (1) =i (T) + Y _ y;B;.

j=1
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Define gi(¥) := (y1, ¥2, ..., ¥q). Now let n = woyr, so that Qy, ¥ = Pyyn. Set n, = n and, for
i<gq,

Ni—1=Pa; --- Py, Xi=— Ti>r}f>oa,-v(ni(t))- (5.9)

Then 1y = Py, n and, for each i < g,
i
Pugn(T) =ni(T) + Y_ xja;.
j=1
The parameters g;(n) = (x1, ..., Xy) are related to i (V) = (¥1, y2, ..., ¥q) as follows.

Lemma 5.7. For each i < g, we have:

) ni=si...51%, _
(i) xi = yi + B Wi (1)) = BY (Quo ¥ (T) = 257 i) = i
(i) yi =x; + o i (T)) = ;) (Puon(T) — Z’,;]l Xjoj) — Xx;.

Proof. We prove (i) by induction on i < g. For i = g it holds because n, = n = woyr = woy,
and s, ...s1 = wo. Note that, for each i < g, we can write

Qﬁi :Pﬁisﬂi =91 ~--si—lPa,-Si L8

Therefore, assuming the induction hypothesis n; =s; ... sV,

Ni—1=Puo;ni =Pu;Si...51¥;
=Si—1...519,Vi

=Si—1...851¥i-1,

as required. This implies (ii), using 1;—1(T) = n; (T) + xj; and ;1 (T) = i (T) + y; Bi:

2x; = o (ni—1(T) — ni(T))
= o (sic1...1%i—1(T) — si ...s19i(T))
=a; (si1...s1(Vi(T) + yiBi) — si...s19i(T))
=2y +otl~v(al~v(s,-,1 ...sll//i(T))oz,-)
=2y; + 28, (vi(T)).
Finally, (iii) follows immediately from (ii) and (i). O
This lemma shows that, when W is a Weyl group, then (y1, ..., y,) are the Lusztig coordi-

nates with respect to the decomposition i* of the image of the path n with string coordinates
(x1,...,xq) with respect to the decomposition i under the Schiitzenberger involution, where i*



1558 P. Biane et al. / Advances in Mathematics 221 (2009) 1522—1583

is obtained from i by the map & = —wopa (see Morier-Genoud [27, Cor. 2.17]). By (iii) of the
preceding lemma, we can define a mapping F : Mj — Ri x C such that

(5i(¥)s Quo¥ (1)) = F(0i(m), Puyn(T)).

Let Li = F(M;). It follows from (ii) that F~! (v, M) =(G(y, 1), L), where

i—1
G(y. 1) =B (A - Zy,ﬂ,») - i.
j=1

Thus, L; is the set of (y, 1) € R x C which satisfy

i—1
0<yi</3iv<)\—zyj,3j) (i<q) (5.10)
j=1
and
v Gy, 1)) =0, aeX. (5.11)

The analogue of Theorem 3.12 also holds for the parameters ¢;(¥') = (y1, y2, ..., Y4), and can be
proved similarly. More precisely, for any two reduced decompositions i and j, there is a piecewise

linear map GiJ :R? — RY such that ¢j() = OiJ(gi(Ip)). In particular, for each simple root «,
we can define a piecewise linear map @; :R? — R such that, if i, = (s‘l", sfl‘) is a reduced
decomposition with s = s, and gj, (¥) = (O, ¥5. ..., yg‘), then y = @, (y) where ¢j(y) =
(1,¥2,---,¥¢). By Lemma 5.7, we have

Ol =o' () — ¥ (G(y, 1), (5.12)
and the inequalities (5.11) can be written as
a’'(W) —OL(») =0, aeX. (5.13)
As in [3], we extend the definition of Qg to two-sided paths. Denote by Cﬂ%(V) the set of con-
tinuous paths 7 : R — V such that 7(0) =0 and " (77 (t)) — F00 as t — oo for all simple «.
For m € C]%(V) and $ a positive root, define Qgm by
Qpn(t) = (1) + [w(t) — w(0)]B,

where

w)y=— _inf BY(7(@) —7(s)).

12>s5>—
It is easy to see that Qgm € CH%(V). Thus, we can set 7y =7 and, fori <gq,

mi—1=9p ... 9,7, a),'(t)z—sir<1ftﬁiv(7r,~(t)—m(s)).
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Then
70 = Quyy i= Qp, ... Qp,
and, for each i < ¢,
i
Quyt(t) =m; (1) + Y [0 (1) — w;(0)]B.
j=l1
For each t € R, write w (1) = (w1 (), ..., w4 (1)).

Lemma 5.8. If Q7w (t) = A and w(t) =y then

inf " (Qug (1) =a” () — O3 ().

uz

Proof. It is straightforward to see that
inf B (Quyt () = Qu (1) = 1 0.

In particular, if iy = (sf, ..., s;") is a reduced decomposition with s = s, and we denote the
corresponding w(-) (defined as above) by (), then

inf o (Quig (1) — Quyy (1)) = wf (1).

u>t
Nowletr():t(‘))‘:t and, for 0 <i <gq,
T = max{s <Tio1: wi(s) = O}, ¥ = max{s <t wf(s) = 0}.
Set T = min{zy, t[‘]"}. It is not hard to see that the path y € C?_r (V), defined by
y(@)=n(t+s)—n(r), t—1=2520,
satisfies 6i(y) = w(t) =y and g, (y) = w*(¢). Thus, a)‘l)‘ 1) = @(’x (v), asrequired. O

Introduce a probability measure P, under which 7 is a two-sided Brownian motion in V with
drift w € C. Set ¢y = (w(¢),t > 0).

Proposition 5.9. Under P, the following statements hold:

(1) Quym has the same law as 7.

(2) Foreacht € R, the random variables wi(t), ..., wy(t) are mutually independent and expo-
nentially distributed with parameters 2ﬂ1v(u), e, 2,6qv ().

(3) Foreacht e R, w(t) is independent of (Qy,,m(s), —00 <5 < t).

(4) The random variables inf, > ozv(QwOrr(u)), o a simple root, are independent of the o-
algebra generated by (7 (t), t > 0).
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Proof. We see by backward inductiononk =g, ..., 1 that Qg, ... Qﬂqn(s), s < t, has the same
distribution as Qg, , ... Qﬂqn(s), s < t, s independent of wy(¢), and that wy (¢) has an exponen-
tial distribution with parameter 28 (). At each step, this is a one-dimensional statement which
can be checked directly or seen as a consequence of the classical output theorem for the M /M /1
queue (see, for example, [28]). This implies that (1), (2), and (3) hold. Moreover

inf B (Quym (1)) = = inf B'(Qp, .. Qg ()

is independent of 7 (), t > 0. Since B; can be chosen as any simple root «, this proves (4). O
Let T > 0. For & € C, denote by E¢ the event that Q,, 7w (s) € C —& forall s > 0 and by E¢ 7
the event that Q,, 7 (s) € C — & forall T > s > 0. By Proposition 5.9, E¢ is independent of 1.
For r > 0, define
B(.r)={teV:l¢—Arl<r}
and

R(z,r)=(@1—r,z1+r) XX (2g —r,zq +71).

Fix (z, 1) in the interior of L; and choose € > 0 sufficiently small so that R(z, €) is contained in
Li x B()\, €) and

inf oV (V) — @(ix(z/) >0. (5.14)
MeB(h€), 7 €R(z,€)

Lemma 5.10.

P (Quo¥ (T) € B(k, €), si(¥) € R(z,€))
= CiiérgOIPH(ES)_I]P’H(Qwon(T) € B(h,6), o(T) € R(z,€), Ex 7).

Proof. An elementary induction argument on the recursive construction of Q,,, shows that, on
the event E¢, there is a constant C for which

max||y; — i ()| V| Quy ¥ (T) = Quym (M| < Cl&1I
Hence, for & sufficiently small,

Pu(Quo¥(T) € B(r, € — Cl§ll), ci(¥) € R(z, € — Cl&l), Ex)
<Pu(Quym(T) € B(h,€), o(T) € R(z,€), Et)
<Pu(Quy¥(T) € B(r, e + ClEll). si(¥) € R(z, e +Cl&l). Ee).

Now E¢ is independent of v, and so
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Pu(Que¥ (T) € B(r,e — Cl&ll). si(¥) € R(z.€ — C|£]l))
Pu(Ee) "Pu(Quon(T) € B(h,€), o(T) € R(z,€), Eg)

<
<Pu(Quy¥(T) € B(r, e + ClEll), si(¥) € R(z, € + Cl&])).

Letting £ — 0, we obtain that

Pu(Quo¥(T) € B(r, €), Gi(¥) € R(z, €))
= Cnsm O]P’,L(E,g)’lIP’M(QwOn(T) € B, €), o(T) € R(z, €), E¢). (5.15)

Finally observe that, on the event
{Qwon(T) € B()"v 6)5 CI)(T) € R(Z’ E)}’

we have, by Lemma 5.8 and (5.14),

inf o (Quom () =" (Quy (1)) — 6L (w(T))

uz

> () -0l =0.

inf
NeB(A,€), 7 €R(z,€)
Thus, we can replace E¢ by E¢ 7 on the right-hand side of (5.15), and this concludes the proof
of the lemma. O

Fora,b e C,define ¢(a,b) =), cw e(w)elwab),

Lemma 5.11. Fix u € C. The functions f(a,b) = ¢(a, b)/[h(a)h(b)] and g,(a,b) = ¢(a,b)/
¢(a, ) have unique analytic extensions to V. x V. Moreover, f(0,b) = k! and gu(0,b) =
h(b)/h(w).

Proof. It is clear that the function ¢ is analytic in (a, b), furthermore it vanishes on the hy-
perplanes (B,a) =0, (8,b) = 0, for all roots B. The first claim follows from an elementary
analytic functions argument. In the expansion of ¢ as an entire function, the term of homoge-
neous degree d is a polynomial in a, b which is antisymmetric under W, therefore a multiple
of h(a)h(b). In particular the term of lowest degree is a constant multiple of A(a)h(b). This
constant is nonzero, as can be seen by taking derivatives in the definition of ¢. By I’Hopital’s
rule, lim, 0 g, (a, b) = h(b)/h(w). It follows that lim,_.¢ f(a, b) is a constant. To evaluate this
constant, note that, since 4 is harmonic and vanishes at the boundary of C,

f h(2e M2 f (@, 1) dh = o2 / o112 gy,
¢ |4

Letting a — 0, we deduce that (0, 1) = k1 as required. O

Denote by Fg the event that ¢ (s) € C —§ forall s > 0 and by Fg¢ 7 the event that ¢ (s) € C —§
forall 7 >s5 > 0.
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Lemma 5.12. For B C C, bounded and measurable,

hm IP’,L(Fg) P, (Y(T) e B, Fer)=cy'h(p)™ / (A =IRIPT/2=IM2/2T 3y g
B

Proof. Setzr = [, e~ IIP/2T g3 By the reflection principle,
P (y(T) €dh, Fer)= el =IT2 ™ o) pr(wé, & + 1) d,
weWw

_ 290 . . . . .
where p;(a,b) = z; le=llb=al*/2t ig the transition density of a standard Brownian motion in V.

Integrating over A and letting T — oo, we obtain (see [3])

Pu(Fg) =Y e(w)e!™ 51,

weW

Thus, using Lemma 5.11 and the bounded convergence theorem,

lim P, (F:)"'P T)e B, F,
CBIEIEO 1w (Fe) M(tﬁ( ) €B, E,T)

1 4 llel? —(IE1? 2 _ + A
=ZT1 lim M =Il"T /2 = (1§17 15+ )/27(15(5’“) 1¢(é§ § ) A
C36—0
B

Zr

=z dim [ R IIPT/2=EIPHIE+AID/2T o (5 ‘57”)(”
C36—0

— ) 1/ WA —MIPT/2= 2T 3 Ty i
B

=7 h(u)™ 1/ A=l /2= 2T ) i,

B

as required. O

Applying Lemmas 5.10, 5.12 and Proposition 5.9, we obtain

Pu(Que¥ (T) € B(x,€), si(¥) € R(z,€))
= Cligm OPM(ES)_IPM(QUJOT[(T) € B(A,€), w(T) € R(z, €), E;T) (Lemma 5.14)
26—

= Clism OIPM(ES)_I]P’M (@(T) € R(z,€))Pyu(Quym(T) € B(A,€), E¢7) (Lemma 5.9(3))

- CiigniOPM(Eg)*‘Pﬂ(w(T) € R(z,))P,(¥(T) € B(r, €), Fr )

— li[ e B Wz [eéﬁiv(u) _ B (M)]
i=1
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x CliEmOPM(Eg)_l]PM(llf(T) € B(r,€), Frr) (Lemma5.9(2))
36—

q
1_[ -BY (M)zl B W _e—Eﬂl-v(u)]

x e h(u) ™! / HON=IIPT/20=I 12T 37y g3/ (Lemma 5.12).

By (h,€)

Now divide by ||B(y, €)]|(2¢)? and let € tend to zero to obtain

q
P (Quo ¥ (T) €dh, ci(¥) €dz) = He—ﬂf(u)z,-e<m>—uunzr/zc;lhme—nxnzm dndz.
i=1

Letting  — 0 this becomes, writing P = Py,

P(Quo¥(T) €dh, si(Y) edz) = c;lh(x)e*"l"z/” drdz. (5.16)
Using Lemma 5.7, it follows that, for (w, A) in the interior of M;,

P(oi(n) € dw, Poyn(T) € d2) =5 h()e /2T duydy. (5.17)

Under the probability measure [P, 1 is a standard Brownian motion in V' with transition density
given by p;(a, b) = zt_le_”b_“HZ/Z’. By Theorem 5.1 under P, Py,,n is a Brownian motion in C.
Its transition density is given, for £, A € C, by

h)
q:(, 1) = ) wewé‘(ﬂ))pt(w&,k)-

As remarked in [3], this transition density can be extended by continuity to the boundary of C.
From Lemma 5.11 we see that g7 (0, A) = k_lh(k)ze_”}"'z/ﬂ. Thus,

P(Poyn(T) € dr) = k™" h(3)2e~IP/2T g (5.18)

To complete the proof of the theorem, first note that since ¢j() is measurable with respect to the
o -algebra generated by (Qy, ¥ (1), u > T), gi(n) is measurable with respect to the o -algebra
generated by (Py,,n(u), u > T). Thus, by the Markov property of P, 1, the conditional distri-
bution of g;(n), given (Py,n(s),s < T), is measurable with respect to the o-algebra generated
by Pun(T). Combining this with (5.17) and (5.18), we conclude that the conditional law of
0i(m), given (Py,n(s), s <T) and Py,n(t) = A, is almost surely uniform on Mi)‘, and that the
Euclidean volume of Mi)‘ is k1 h(}), as required.
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5.5. Proof of Theorem 5.5

Let ¢ = won and Qy,, = Py, wo. Denote by P; (respectively Q) the semigroup of Brownian
motion in V (respectively C). Under IP, by [3, Theorem 5.6], Qv is a Brownian motion in C.
Let 8 € C. The function e5(v) = /%" is an eigenfunction of P, and the es-transform of P, is
a Brownian motion with drift §. Setting ¢s5(v) = Zwewe(w)ews’“), the function ¢s/h is an
eigenfunction of Q, and the (¢s/h)-transform of Q; is a Brownian motion with drift § condi-
tioned never to exit C (see [3, Section 5.2] for a definition of this process). By Theorem 5.2, the
conditional law of n(T'), given (Py,n(s), s < T) and Py n(T) = A, is almost surely given by
,u)l‘)H. It follows that the conditional law of ¥ (T'), given (Qy, ¥ (s), s < T) and Q¥ (T) = A,
is almost surely given by /L}I”)H. Denote the corresponding Markov operator by K (A, -) = /L)]SH(-).
By [3, Theorem 5.6] we automatically have the intertwining K P, = Q;K. Note that Ke; is
an eigenfunction of Q;. By construction, the Kes-transform of Q;, started from the origin,
has the same law as Qwol/f(‘”, where ® is a Brownian motion in V with drift §. Recalling
the proof of [3, Theorem 5.6] we note that Qwow(‘s) has the same law as a Brownian motion
with drift § conditioned never to exit C. It follows that Kes = ¢5/(c(5)h), for some c(5) # 0.
Now observe (using Lemma 5.11 for example) that limg_.o Kes(§) = 1. Thus, by Lemma 5.11,
c(§) =limg_ops(§)/h(§) = k~'h(8). We conclude that

(wd,A)
6.0) A od :kaews(w>e _
f e Hpu(dv) h©h(n)
14

This formula extends to § € V* by analytic continuation (see Lemma 5.11 again), and the proof
is complete.

5.6. A Littlewood—Richardson property

In usual Littelmann path theory, the concatenation of paths is used to describe tensor products
of representations, and give a combinatorial formula for the Littlewood—Richardson coefficients.
In our setting of continuous crystals, the representation theory does not exist in general, and the
analogue of the Littlewood—Richardson coefficients is a certain conditional distribution of the
Brownian path. In this section we describe this distribution in Theorem 5.15.

Let i = (s1,...,8;) where wg = s1...54 is a reduced decomposition. For n € Cg(V), let
x = pi(n).

For each simple root o choose now j, = (s7, ..., sg‘), a reduced decomposition of wy, such
that s§ = s, and denote the corresponding string parameters of the path n by (XY, ..., x7) =
0j, (M. As in (5.2), there is a continuous function ¥, : R? — R such that i;‘ =Y/ (x).Fix A, u €
C and suppose that A +1(s) € C for 0 < s < T. Then ¥ = —infs<7 a¥(n(s)) <a¥(A). Inother
words,

' (x)<a¥(h), aeX. (5.19)
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Let Mi}" "# denote the set of x € MiM which satisfy the additional constraints (5.19). This is a

compact convex polytope. Let v*# be the uniform probability distribution on MiA * and let vy, “
be its image on V by the map

q
x=(x1,...,xq)eMiA’“|—>)L+,u—ijaj eV.
j=1
Let n be the Brownian motion in V starting from 0. Observe that, by Theorem 3.12, the event

{n(s) € C — A, 0 < s < T} is measurable with respect to the o-algebra generated by pj(n).
Combining this with Theorem 5.2 we obtain:

Corollary 5.13. The conditional law of pi(n), given Py,n(s), s < T, Py,n(T) = pn and A +
ns)eCfor0<s<T,is v 1 and the conditional law of X +n(T) is vy y.

For s, t >0 let
(zsm) (@) = n(s +1) —n(s),
(Ts Puwgm) (1) = Puyn (s + 1) — Puon(s).
Lemma 5.14. Forall s > 0,
Puo (Ts Pusg) = Pug Ts .-

Proof. If 1, 75 :RT™ — V are continuous path starting at 0, let 77 x; 775 be the path defined
by 71 x5 m2(r) = w1 (r) when 0 < r < s and 1 %5 ma(r) = mi(s) + mo(r — s) when s < r. By
Lemma 4.12, Py, (711 x5 m2) = Py, (7w1) *5 T2 Where 75 is a path such that Py, (72) = Py, (12).
Since 7, (] x5 m2) = 72, this gives the lemma. O

Let v, , be the measure on C given by

dxy =10
Yau( x)—m”k‘u( x).

It will follow from Theorem 5.15 that this is a probability measure. Consider the following o -
algebra

Goi =0 (Pugn(a), a <s, Puytsn(r), r <t).

The following result is a continuous analogue of the Littelmann interpretation of the Littlewood—
Richardson decomposition of a tensor product.

Theorem 5.15. For s,t > 0, yy,, is the conditional distribution of Py n(s +t) given G,
Puen(s) = A and Py, tsn(t) = 1.
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Proof. When (X, (6;),P,) is a Markov process with shift 6, (i.e. X;4+, = X o 6;), for any
o (X, r > 0)-measurable random variables Z, Y > 0, one has

E(Zob|o(X;, s<t,Y 06)) =Ex,(Z|o(¥)) 06,

Let us apply this relation to the Markov process X = Py n (see [3]). Notice that since
P (TsX) = Py (10 X) o by, it follows from the lemma that

gs,t = G(Xu’ Pwo(TOX)(r) o 9S7 a < ss r < t)'
Therefore, for any Borel nonnegative function f:V — R,

E[f(Pwoﬂ(S +t))|gs,t] = EX()[f(XtNG(Pw()(TOX)(r)» r< t)] OGS~

One knows [3, Theorem 5.1] that X is the ~-process of the Brownian motion killed at the bound-
ary of C. In other words, starting from Xo = A, X is the h-process of A 4 n(¢) conditionally on
A+ n(s) € C, for 0 < s < t. It thus follows from Corollary 5.13 that

Ei[f (X0)|o (Puy (0 X)(r), r <1)] /f(X)h(X)dvx u(x)

O)

when Py, (toX)(t) = . This proves that

BLF (Payn(s +0)[Ges] = [ £ diin 0
when Py n(s) = A and Py, tsn(t) =p. O
5.7. A product formula

Consider the Laplace transform of “1)5H given, for L € C, z € V*, by

>w e(w)elswh)

h(z)h(}) (420

L) =k
This is an example of a generalized Bessel function, following the terminology of Helgason [12]
in the Weyl group case and Opdam [29] in the general Coxeter case. It was a conjecture in Gross
and Richards [10] that these are Laplace transform of positive measures (this also follows from
Rosler [31]). They are positive eigenfunctions of the Laplace and of the Dunkl operators on the
Weyl chamber C with eigenvalue ||A ||2 and Dirichlet boundary conditions and J; (0) = 1. Let f;
be the density of the probability measure ,ukDH. One has

fe%vm(u)du =7, (2). (5.21)

14

Let, forveC,

> hv) fi(wv = p).

weW

fA,,u(v) h( )
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It follows from the next result that f3 , (v) >0
Theorem 5.16.

(i) Fora,ueCandzeV*

BT (2) = f 1@ Fun()dv.

C
(i) VA,/L(dx) ZfA,u(x)dx~

Proof. The first part is given by the following computation, similar to the one in Dooley et al. [6],
we give it for the convenience of the reader. It follows from (5.20) and (5.21) that

Z,wu+v)

NGO (z)—/ @y (z)fx(v)dv—kZE(w)/h( e )fx(v)dv
\%4

Using the invariance of the measure /L)]‘)H under W, fi(wv) = fo(v) for w € W. One has

(z,w(u+v))

B =k Vet )/ e ARLE

—st(w)/h( )h()fm W dv

_ W) / T @) fi. (v — ) dv

Z / Jo(Dh) fu(v — ) dv

h(u) w4

> [ s@hw i - o

weW

h()

= / J2 () fru(v)dv
C

where we have used that, up to a set of measure zero, V = UweW w~1C. This proves (i).
Let us now prove (ii), using Theorem 5.15. Since 7 is a standard Brownian motion in V,
{n(r), r <s} and 7,7 are independent, hence, for z € V*,
E( (z,n(s+1)) )|g )= ( (z,n(9)) gz, T (1)) |g )
=E(elen) o (Pugn(a), a < s))IE(e“’””(’)> o (Puytsn(b), b<t)).
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By Theorem 5.5,
Ju(2) = E(eS19 |0 (Pyon(a), a <s))
when Py, n(s) = A and, since 741 and 1 have the same law,
Ju(@) =E(e! ™16 (Pyyten (), b<t))
when Py, 7,1 (t) = . Therefore
E(e®n6HN G, ) = T (2) Ju (2).
On the other hand, by Lemma 4.12, G; ; is contained in o (Py,,n(r), r < s +1t), thus
]E(e<z”7(s+’)) |Gs.i) = E(E(e<z’"(s+’)> lo (Puon(r), r <s+1))|Gs.r)
=E(Jz(Puen(s +1))|Gy.1).-

It thus follows from Theorem 5.15 that
B (2)Ju(2) = / Jy (@) dyy,u(v).

Therefore, for all z € V*,

[ v@fuwdr= [ 1@ a0
By injectivity of the Fourier—Laplace transform this implies that
dyy (V) = fir,u()dv. O

The positive product formula gives a positive answer to a question of Rosler [32] for the radial
Dunkl kernel. It shows that one can generalize the structure of Bessel-Kingman hypergroup to
any Weyl chamber, for the so called geometric parameter.

6. Littelmann modules and geometric lifting

6.1. It was observed some time ago by Lusztig that the combinatorics of the canonical basis
is closely related to the geometry of the totally positive varieties. This connection was made
precise by Berenstein and Zelevinsky in [2], in terms of transformations called “tropicalization”
and “geometric lifting.” In this section we show how some simple considerations on Sturm-—
Liouville equations lead to a natural way of lifting Littelmann paths, which take values in a
Cartan algebra, to the corresponding Borel group. Using this lift, an application of Laplace’s
method explains the connection between the canonical basis and the totally positive varieties.

This section is organized as follows. We first recall the notions of tropicalization and geomet-
ric lifting in the next subsection, as well as the connection between the totally positive varieties
and the canonical basis. Then we make some observations on Sturm—Liouville equations and
their relation to Pitman transformations and the Littelmann path model in type A;. We extend
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these observations to higher rank in the next subsections then we show, in Theorem 6.5 how they
explain the link between string parametrization of the canonical basis and the totally positive
varieties.

6.2. Tropicalization and geometric lifting

A subtraction free rational expression is a rational function in several variables, with positive
real coefficients and without minus sign, e.g.

1+ 20/, (1—=13)/(0—=1) or 1/(tita+313ts)

are such expressions, but not #; — . Any such expression F(t1,...,t,) can be tropicalized,
which means that

Fiop(X1, ..., xy) = lim elog(F(e"/¢, ... e™/%))
e—>04
exists as a piecewise linear function of the real variables (x1,...,x;), and is given by an ex-
pression in the maxplus algebra over the variables x1, ..., x,. More precisely, the tropicalization

F — Fyop replaces each occurrence of + by V (the max sign x vV y = max(x, y)), each product
by a +, and each fraction by a —, and each positive real number by 0. For example the three
expressions above give

(t1 +2t2/13)wop = X1 V (X2 — x3), ((1 — x3)/(1 — )c))trop =0VvxVv2x,
and

(1/(tit2 + 3t3t4))trop = —((x1 +x2) V (x3 + x4)).
Tropicalization is not a one to one transformation, and there exists in general many subtraction
free rational expressions which have the same tropicalization. Given some expression G in the
maxplus algebra, any subtraction free rational expression whose tropicalization is G is called a
geometric lifting of G, cf. [2].

6.3. Double Bruhat cells and string coordinates

We recall some standard terminology, using the notations of [2]. We consider a simply con-
nected complex semisimple Lie group G, associated with a root system R. Let H be a maximal
torus, and B, B_ be corresponding opposite Borel subgroups with unipotent radicals N, N_. Let
o;, i €l,and Oliv , 1 € I, be the simple positive roots and coroots, and s; the corresponding reflec-
tions in the Weyl group W. Let e;, f;, h;, i € I, be Chevalley generators of the Lie algebra of G.
One can choose representatives w € G for w € W by putting §5; = exp(—e;) exp(fi) exp(—e;)
and vw =vw if [(v) + [(w) =I(vw) (see [8, (1.8), (1.9)]). The Lie algebra of H, denoted by h
has a Cartan decomposition f) = a + ia such that the roots ¢; take real values on the real vector
space a. Thus a is generated by «;”, i € I, and its dual a* by a;, i € 1.

A double Bruhat cell is associated with each pair u, v € W as

L*“Y=NiuNNB_vB_.
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We will be mainly interested here in the double Bruhat cells L*:¢. As shown in [2], given
a reduced decomposition w = s;, ...s;, every element g € L"¢ has a unique decomposition

g =x—i,(r1)...x—, (rq) with nonzero complex numbers (ri, ..., rq), where x_; (s) = @ (i sE)‘)
(where ¢; is the embedding of SL, into G given by e;, f;, h;). The totally positive part of the
double Bruhat cell corresponds to the set of elements with positive real coordinates. For two dif-
ferent reduced decompositions, the transition map between two sets of coordinates of the form
(r1,...,ry) is given by a subtraction free rational map, which is therefore subject to tropicaliza-
tion.

As a simple example consider the case of type A;. Let the coordinates on the double Bruhat
cell L*0-¢ for the reduced decompositions wg = sys251, and wg = s25152 be (uy, uz, u3) and
(t1, 12, t3) respectively, then

15 0 0 uiusz 0 0
(tl ttz/tr 0 ) = <u3 +uz/ur uzfuiuz 0 ) 6.1)
1 nB/b+1/t1 1/ 1 1/u3 1/us
which yields transition maps
f=uz+uzfuy,
Irp =uus,
13 =uuz/(uz +ujus). (6.2)
On the other hand, for each reduced expression wy = s, ... S8i, we can consider the

parametrization of the canonical basis by means of string coordinates. For any two such re-
duced decompositions, the transition maps between the two sets of string coordinates are given
by piecewise linear expressions. As shown by Berenstein and Zelevinsky, these expressions are
the tropicalizations of the transition maps between the two parametrizations of the double Bruhat
cell L™0-¢ associated to the Langlands dual group. For example, in type A, (which is its own
Langlands dual) let (x1, x2, x3) be the Kashiwara, or string, coordinates of the canonical ba-
sis, using the reduced decomposition wy = s15251, and (y1, y2, y3) the ones corresponding to
wo = s25152. The transition map between the two is given by

yi=x3V (x2 —x1),
y2 =x1 + X3,

y3=x1 A (x2 —x3)

which is the tropicalization of (6.2).

We will show how some elementary considerations on the Sturm-Liouville equation, and
the method of variation of constants, together with the Littelmann path model explain these
connections.

6.4. Sturm—Liouville equations
We consider the Sturm—Liouville equation

" +qp=1rp (6.3)
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on some interval of the real line, say [0, 7] to fix notations. In general there exists no closed
form for the solution to such an equation. However, if one solution ¢ is known, which does not
vanish in the interval then all the solutions can be found by quadrature. Indeed using for example
the “method of variation of constants” one sees that every other solution ¢ of this equation in the
same interval can be written in the form

ds

<p(t)—wo(t)+v<po(t)/ per

for some constants «, v. If this new solution does not vanish in the interval 7, we can use it to

generate other solutions of the equation by the same kind of formula. This leads us to investigate
the composition of two maps of the form

1
Eyvi@—up(t) + vcp(t)/ ——d
@=(s)
acting on nonvanishing continuous functions. It is easy to see, using integration by parts, that
whenever the composition is well defined, one has
Eu,v o Eu/,v/ = Euu/,uv’Jrv/u/;

therefore these maps define a partial right action of the group of unimodular lower triangular

matrices
u 0
v ou!

on the set of continuous paths which do not vanish in 7. Of course this is equivalently a partial
left action of the upper triangular group, but for reasons which will soon appear we choose this
formulation. In particular if we start from ¢ and construct

W) —mp(r)+v<p(r>/ —5

which does not vanish on [0, 7], then ¢ can be recovered from i by the formula

t
w(r>=u—1w>—vw(r)ofﬁds.

Coming back to the Sturm—Liouville equation, let 1, p be a fundamental basis of solutions at 0,
namely 1(0) = p’(0) =1, n'(0) = p(0) = 0. Then in the two-dimensional space spanned by p, 1
the transformation is given by

(x, y) = (ux,uy +v/x)
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and it is defined on x # 0. Again it is easy to check, using this formula, that this defines a right
action of the lower triangular group.
Let us now investigate the limiting case u = 0, which gives (assuming v = 1 for simplicity)

t
ds
T = —_— 6.4
o () = o) Of s 64)

This map provides a “geometric lifting” of the one-dimensional Pitman transformation. Indeed
set @(7) = e, then using Laplace’s method

t

lim glog(e““)/f / e2al)/e ds) =a(t)—20inf a(s). (6.5)

e—>04

I

0

This time the function ¢ cannot be recovered from 7 ¢. If we compute the same transformation
with ¢y (1) := () (1 + v ﬁ ds) we get

1
%(S)z

oot | ) (o)
—Y O AT e

1
1
=¢(f)!WdS

=Top).

t
T‘Pv(t)zfpv(t)/ ds
0

This is of course not surprising, since 7 ¢ vanishes at 0, it thus belongs to a one-dimensional
subspace of the space of solutions to the Sturm-Liouville equation, and 7 is not invertible.
In order to recover the function ¢ from v = 7 ¢ we thus need to specify some real number.
A convenient choice is to impose the value of

T
1 w(T)
= ds = ———.
: 0[ 02T (1)

With this we can compute

/T [P S /OB |
J ¥ (s)? fol L ds fT Lds V(@ &

o(s)? 0 o(s)2
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Proposition 6.1. Assume that v = T ¢ for some nonvanishing ¢, then the set T~ () can be
parametrized by & € 10, +00[. For each such & there exists a unique s € T-'(Y) such that

T .
£= fo %(—IS)Z ds, given by

T
1 1
ws(t)=¢(t)<g+t/ o a’s).

Identifying the positive half-line with the Weyl chamber for SL;, we see that sets of the form
T~ '(4) are geometric liftings of the Littelmann modules for SL,. The formula in the proposition
gives a geometric lifting of the operator H* since

T

Ha(t)=a(t) —x A2 inf a(s)= lim alog(e“m/a <e—x/€+/e—2“(”/5 ds)).
t
t

<s<T e—>04

We shall now find the geometric liftings of the Littelmann operators. For this we have, know-
ing an element g, € T ~!(4), to find the solution corresponding to &. Since

T
1 1
. = — —d . .=1,2,
e (1) w(t)(éi+t/1ﬁ(s)2 s) i

one has

S T LY N Y
va =% & & =¥ & fgmds P, (5)? '

0

Using Laplace method again one can recover the formula for the operators £}, see Definition 3.3.
6.5. A 2 x 2 matrix interpretation

‘We shall now recast the above computations using a 2 x 2 matrix differential equation of order
one, and the Gauss decomposition of matrices. This will allow us in the next section to extend
these constructions to higher rank groups.

Let N, be the nilpotent group of upper triangular invertible 2 x 2 matrices, let N_ be the
corresponding group of lower triangular matrices, and A the group of diagonal matrices, then an
invertible 2 x 2 matrix g has a Gauss decomposition if it can be written as g = [g]_[glo[g]+
with [g]- € N_, [glo € A and [g]+ € N4+. We will use also the decomposition g = [g]_[glo+
with [glo+ = [glolg]+ € B = AN,. The condition for such a decomposition to exist is exactly
that the upper left coefficient of the matrix g be nonzero.

Let us consider a smooth path a : [0, T] — R, such that a(0) = 0, and let the matrix b(r) be
the solution to

db da
= ( o ) b; b(0) = Id. (6.6)
dt
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Then one has

a(t) a) [t ,—2a(s)
b(t)=<eo e ds).

e—a(t)

Now let g = (Z u(_) ! ) and consider the Gauss decomposition of the matrix

bg _ <ueu(t) + vea(t) f(; e—2a(s) ds u—lea(t) f()’ e—2a(s) dS)

Ue—a(l) u—le—a(t)
One finds that
1 0
[bgl- = ve~® 1
ued®) fpealn) f(; e—2a(s) dg
and
[bg]0+ _ (uea(t) + vea(t) fé e—2a(s) ds u—lea(t) f()t e—2a(s) ds )
0 (uea(t) + ved® fé‘ e—2a(s) ds)—l

One can check the following proposition.

Proposition 6.2. The upper triangular matrix [bglo+ satisfies the differential equation

d 4T, a() 1
—I[b = a"" b
7710810+ ( 0 —%Tu,va(t)) [bglo+

where T, ya(t) =log(E, ,e*").

This equation is of the same kind as Eq. (6.6) satisfied by the original matrix b, but with a
different initial point. The right action E, , is thus obtained by taking the matrix solution to
(6.6), multiplying it on the right by g = ('1‘) u?,) and looking at the diagonal part of the Gauss
decomposition of the resulting matrix. Actually in this way the partial action 7}, , extends to
a partial action T, of the whole group of invertible real 2 x 2 matrices. One starts from the
path a, constructs the matrix b by the differential equation and then takes the O-part in the Gauss
decomposition of bg. This yields a path T,a. The statement of the proposition above remains
true for [bglo+. The importance of this statement is that one can iterate the procedure and see
that Ty, 4, = Ty, o Tg, when defined.

Consider now the element s = ((1) _01), then

t

Tea(t) =a(t) + 10g< /672”(” ds).

0

This is the geometric lifting of the Pitman operator obtained in (6.4). In the next section we shall
extend these considerations to groups of higher rank.



P. Biane et al. / Advances in Mathematics 221 (2009) 1522-1583 1575

6.6. Paths in the Cartan algebra

We work now in the general framework of the beginning of Section 6.3.

One has the usual decomposition g = n_ + a + n4. Correspondingly there is a Gauss de-
composition g = [g]_[glolg]l+ with [g]— € N_, [glo € A, [g]+ € N, defined on an open dense
subset. We denote by [glo+ = [glo[g]+ the B = AN part of the decomposition.

The following is easy to check, and provides a useful characterization of the vector space
generated by the e;.

Lemma 6.3. Let n € ny., then one has [h~'nhl = n for all h € N_ if and only if n belongs to
the vector space generated by the e;.

Let a be a path in the Cartan algebra a and let b be a solution to the equation
d d
—b=|— b
di (dt @t ")
where n € @, Ce;.

Proposition 6.4. Let g € G, and assume that bg has a Gauss decomposition, then the upper part
[bglo+ in the Gauss decomposition of bg satisfies the equation

d d

—I[b =[—T b 6.7

dt[g]o—i- (dt ga+n)[g]0+ (6.7)
where Tqa(t) is a path in the Cartan algebra.

Proof. Let us write the equation

d d
E([bg]f[bg]m) = (Ea + n)[bg][bg]o+

in the form

1 d 1 fd d _
[bg]~! Slbel- = [bg1~! (E“ + n> [bg]- — E[bglw[bg]oi.

Since the left-hand side of this equation is lower triangular, the right-hand side has zero upper
triangular part therefore, by Lemma 6.3

d d
n= [[bg]_l (E“ + n) [bg]_}+ = [E[bgm[bg]oj]

therefore there exists a path Tga such that Eq. (6.7) holds. O

+

‘We now assume that

n= E nje;
i
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with all n; > 0. When g = §; is a fundamental reflection, one gets a geometric lifting of the
Pitman operator

t

T, a(t) =a(t) + log< /e‘“"("(‘y)) ds)otiv

0

associated with the dual root system, i.e.

1
lim T, <—a> =P,va.
e—0 & !

Thanks to the above proposition, one can prove that these geometric liftings satisfy the braid
relations, and T, provides a geometric lifting of the Pitman operator P,, for all w € W.
Analogously the Littelmann raising and lowering operators also have geometric liftings.

6.7. Reduced double Bruhat cells

In this section we show how our considerations on Littelmann’s path model allow us to make
the connection with the work of Berenstein and Zelevinsky [2]. We consider a path a on the
Cartan Lie algebra, with a(0) = 0, then belongs to the Littelmann module pro a-

Consider the solution b to b = (%a +n)b, b(0) = I. Then [[b]wol-o € L™, thus if

wo = iy - Si, (6.8)
is a reduced decomposition, then one has
[[6)swo] _g = x—iy (1) .. x4, (r)
for some uniquely defined r1(a), ..., ry(a) > 0 (see [2]). Let ug(a) = ri(a)e” @™,
Theorem 6.5. Let (x1, ..., x,) be the string parametrization of a in proa, associated with the

decomposition (6.8), then
(X1, xg) = elii%e(logul(a/e), el loguq(a/s)).
Proof. When we multiply b on the right by §;,, and take its Gauss decomposition
[bsi, 1-[bs;, Jolbsiy 1+ = [Dlo[b]4-si,
then
[y, [bsi 17" = [b]y ' [bsiy1-[bsi,Jo € Nsiy N N B_L%1*
and

[b)45i, [bsi, 15" = x4, (1)
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for some 1. In fact, using our formula for Littelmann operators,
T
r = (@@ / pmea) g
0

Comparing with (3.3) we see that rje~*1 @) gives a geometric lifting of the first string coordi-
nate for the Littelmann module. We can continue the process starting from [bs;, ]+, to get

[Dsi, 1+si,[bsi, Sizlll =x_j,(r2)
(using the fact that [g1g2]+ = [[g1]+g2]+ for g1, g2 € G) obtaining successive decompositions
(D)5, - - i [bsiy - 55 )5 = X—iy (F1) -« Xy (7).

This gives the coordinates of [[b]+wg]—g € L™¢, which are thus seen to correspond to the string
coordinates by a geometric lifting. O

Appendix A
This appendix is devoted to the proof of Theorem 2.6.

Lemma A.L. If B(A), A € C, is a closed normal family of highest weight continuous crystals
then for each A, u € C such that A <  there exists an injective map ¥, ,, : B(A) — B(u) with
the following properties:

(i) WA,/L(bA) = bu,
(ii) Wy ey (b) =e, W . (b), forallbe B(A), a e X, r >0,
(i) W f5(b) = f1W.u (D) if £ (b) € B(h.

Proof. Let v = p — A. First consider the map ¢, ,, : B(A) — B(A) ® B(v) given by ¢; ,(b) =
b ® b,, when b € B()). Since b, is a highest weight &, (b,) = 0. By normality, for all b €
B(X), 9o (b) = 0. Therefore o := ¢y (b) — £4(by) = ¢ (b) > 0. By definition, this implies that
ea(b®b,) =¢e4(), o (b ®by) =@y (b), wt(b ® b)) =wt(b) + v. Using (2.1) we see also that,
forr >0, e,(b®b,) =e,,b®b, and that, when f (b) € B(A), r < ¢o(b) = o by normality, and
therefore f; (b®b,) = f;b®b,. Since the family is closed there is an isomorphism iy ,, : F (b, ®
by) = B(u). One has i; ,(b) ® by) =by. One cantake ¥y , =iy 0@y . O

The family ¥, , constructed above satisfies ¥;, ; = id and, when A < m <, YyvoW =
¥, v, so that we can consider the direct limit B(0o) of the family B(X), A € C, with the injective
maps ¥, : B(A) — B(u), A < . Still following Joseph [18], we define a crystal structure on
B(c0).

Proposition A.2. The direct limit B(c0) is a highest weight upper normal continuous crystal
with highest weight 0.
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Proof. By definition, the direct limit B(co) is the quotient set B/ ~ where B = UA e B(a) is
the disjoint union of the B(2)’s and where by ~ by for by € B(A), by € B(i1), when there exists
aveCsuchthat v > A, v > pand (b)) =¥, v(b2). Let b be the image in B(00) of b € B.
If b € B()), then we define wr(b) = wt(b) — A, £4(b) = €4 (D), @o(b) = £4(b) + " (wt(b)) and,
whenr >0, e (b) = e, (b). These do not depend on 2, since if 1 > A and b' =¥, (D), then one
has b’ = b and wt(b") = wt(b) + pu — A. In order to define f (b) for r >0, let us choose = A
large enough to ensure that

Qb)) = eq(b) +a (wt(b)) + " (u—2) >r

Then f7b" # 0 by normality and we define f "b = frb’. Again this does not depend on . Using
the lemma we check that this defines a crystal structure on B(co). Each ¥, ;,, A < u, commutes
with the €/, » > 0. This implies that B(oo) is upper normal. Since each B(}) is a highest weight
crystal, B(oo) has also this property. O

We will denote b, the unique element of B(co) of weight 0. Note that B(oco) is not lower
normal. For instance,

0u(boo) =0,  f(boo) 0, forall feF. (A.1)

For A € C we define the crystal S(A) as the set with a unique element {s, } and the maps wt(s)) =
A, €q(s1) = —aY (X), Po (sy) =0 and €}, (s)) = 0 when r # 0.

Lemma A.3. The map
U, :be B(A) > b®s; € B(oo) ® S(L)
is a crystal embedding.
Proof. Let b € B(A), then
wt(3.(b)) = wi(b ® 5,) = wt(b) + wi(s) = wt(b) — A + A = wi(b).

Let 0 = @ (b) — £4(s1). Then o = @, (b) since g4 (s3) = —aV (1) and @y () = ¢4 (b) — ¥ (M).
Thus o > 0 by normality of B(A). By the definition of the tensor product, this implies that

£a (W (D)) = £a (b ® 53) = £q/(b) = £4(b),
thus @y (W (b)) = ¢q (b). Furthermore, since o > 0,
(WD) = e (b ® ;) = g™ =7 (b) @ M,
When r > —o, this is equal to el’x(l;) ® sp = Wi(e, (D). If r < —o then e (W) (D)) = e, ° b)®

et (s3) = 0, since €%, (s;) = 0 when s # 0, and on the other hand, ¢/, (b) = 0 by normality. Thus
U, (er(b))=0. O

If f= fan~ - fal e F, we say that f € F is extracted from f if f' = fu" --- fo with 0 <
rp <ri,k=1,...,n.Recall the definition of By = {b (1), t < 0} given in Example 2.2.
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Lemma A 4. Let f € F and a € X, then there exists [’ extracted from f and t > 0 such that
f(boo ® ba(o)) = f/boo ® by (—1).

Moreover if 1 € C is such that «¥ () = 0 and B (L) large enough for all B € X — {a}, then for
w € C, for the same f' € F andt >0,

fbr®by) = f'br ® fibyu.

Proof. The first part follows easily from the definition of the tensor product. Let A € C such
that V(M) =0, u € C, B € X — {a} and r > 0. If, for some s > 0, one has ei;,(fofbu) # 0 then
wt(efg(fofbu)) =u+sB —raisin u — C (since p is a highest weight). This is not possible
because BY (s —ra) > sp (B) > 0. Therefore, by normality, eg( f2b,) = 0. On the other hand,
forall f=fy" - fol €F,

n

0p(fbr) = B" (wi(fb) +ep(fbr) = B¥ (wi(fb) =B (W) — Y reBY ().

k=1

Let o = @g(fbr) — eg(fobu) =@p(fb;) and s > 0. Then

n

o =pp(fbr) =B ) =D _nB ().

k=1

If BV (1) is large enough, then o > max(s, 0) which implies, see (2.1), that
S5(fba® fobu) = (£3./b2) ® fiby. (A2)

On the other hand, @, (b)) = a" (A) + &4 (b)) = 0, since &4 (b;) = 0 by normality. We also know
that ¢y (bso) =0, see (A.1), hence

n n

Ga(F52) = ¢a(bi) = Y 1" (@) = @ulboo) = Y 1kt (@) = @ bov).

k=1 k=1

Thus 0 = ¢ (fbx) and does not depend on A. It follows that the following decomposition is
independent of A:

Fa(for® fiby) = fI™ £ ® [ b,. (A3)

Using (A.2) and (A.3), it is now easy to prove the lemma by induction on n, proving first the
second assertion. 0O

Proposition A.5. For each simple root «, there is a crystal embedding I, : B(00) — B(00) ® By,
such that I'y(boo) = boo ® by (0).
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Proof. Let us show that the expression
Tu(fboo) = f(boo ®ba(0)),  f€F, (A4
defines the morphism I7,. First we check that it is well defined. By definition, fbs, = fb, for

all v e C such that fb, # 0. _ o
Let us choose A as in Lemma A.4. For u € C large enough, fb;4, # 0. Let us write

Fbsp=f(br®by) = f'by ® fliby.
Then f” and t depend only on fb; 4, which by definition depends only on fbs.. By Lemma A.4,
f(boo ® ba(0)) = f'boo @ ba(—1)
which depends only on fbs, (and not on f itself), showing that I, is well defined on Fb,, and
thus on B(00), since Fboo = B(00). Notice that f(bao ® by (0)) # 0 since f'boo # 0.

I:et us prove that I, is injective. Suppose that f (b ® by (0)) = f (boo ® by (0)) for some
f, f € F. Using Lemma A 4,

F(boo ®ba(0)) = f'boo ®bo(—1) and  f(boo ® by (0)) = f'bog ® be(—1).
If A € C is as in this lemma, then
f(bk ® bu) = f/bk ® fé(bu) = f/bk ® fat;bu = f(bk ® bu),

therefore fbyy, = fb,H_M, thus fbeo = fboo. Itis clear that Iy, commutes with fi,r =0.Since
8a (b (0)) = @y (bo) =0,

Ea (Fa (boo)) =E&q (boo ® by (O)) = eq(boo),
hence, if f = fy" -+ ful €F,
ta (T (fo0)) = €a (f Ta(boo)) = £a (T (boo)) = D rkB” (k) = 0 (fboo)-

k=1

Therefore I, commutes with &,. It also commutes with wt since wt(bs,) = 0. Let us now con-
sider e/,,r > 0. Let b € B(00). If €/,(b) # 0, then

Foy(b) = Iy (faey () = fo (Tu(e; (1)) #0
hence I, (e, (b)) = e, (I (b)). Suppose now that e, (b) = 0. Since B(oo) is upper normal, one
has g4 (b) = 0, hence ¢4 (I, (b)) = 0. By the lemma, there is /' € F and ¢ > 0 such that I, (b) =
Iy (b) = f'bso ® by (—t). Therefore

0= 8a(ra(b)) > sa(f/boo) = 0.
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By upper normality this implies that e, (f'bx) = 0, hence
r r( g rogl
eh(Tu(®) = el (f'boo ® bo(—1)) = (€} f'bo) ® ba(—1) =0. O
The following lemma is clear.

Lemma A.6.~Let Bi, By and C be three continlitous crystals and  : Bl — By be crystal embed-
dings. Then y: B ® C — By ® C defined by (b ® ¢) = ¥ (b) ® c is a crystal embedding.

A.l. Uniqueness. Proof of Theorem 2.6
Recall that ¥ is the set of simple roots. Fix a sequence A = (..., a2, a1) of elements of ¥

such that each simple root occurs infinitely many times and «,, # o, 41 foralln > 1. Let f?(A) be
the subset of - - - ® By, ® By, in which the kth entry differs from by, (0) for only finitely many k.

One checks that the rules given for the multiple tensor give B(A) the structure of a continuous
crystal (see, e.g., Kashiwara [21, 7.2], Joseph [17,18]). Let b4 be the element of B(A) with
entries by, (0) for all n > 1. We denote B(A) = Fby.

Proposition A.7. There exists a crystal embedding I' from B(oco) onto B(A) such that
I'(boo) =ba.

Proof. Let f € F. We can write f = fof,ﬁ ofl’ where (...,a2, 1) = A and r, > 0 for all
n>1.By Lemma A4

Ty (f11(hoo)) = 11 (Taybos) = f2 (Boo ® by (0)) = boo ® by (—11),
therefore
r;

Ton (fi -+ fatboo) = (fat -+ ferboo) @ bay (=11)

for some r{, ..., r; > 0. Similarly,

T (foi -+ farboo) = (faf +++ fus boo) ® bey (=15)

for some r,ry,...,r;/. If we apply Lemma A.6 to B; = B(00), By = B(00) ® By,, ¥ =
I'y,, C = By, , we obtain a crystal embedding

[y, : B(00) ® By, — B(00) ® By, ® By,
such that, for b € B(00), by € By,
[o,(b®by) = T,b®by.

Let [y, o, = [, 0 Ty, : B(00) = B(00) ® By, ® By, , then
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Faz’al( J]k"“f(::boo) = 0!2( 0:11( "'fo:%boo®boc1 (_V{))
r;

T
= L (fik -+ Fuiboo) @ bus (=1})

(- s boc) © bu (1) @ by (1))
Again, with I, we build I'y; 4.0 = fa3 o Iy, «, - Inductively we obtain strict morphisms

Ty.....0y 1 B(00) = B(00) ® By ® -+ ® By, ® By,
such that for some sy, ..., 51
T (2 21 boo) = boo ® by (—s58) @ -+ ® by, (—s1).
Now we can define I : B(co) — B(A) by the formula
F(fi e filboo) = ® oy, (0) ® +++ ® by, (0) ® by (—5k) ® -+ ® by, (—s1).

One checks that this is a crystal embedding. O

This shows that B(oco) is isomorphic to B(A), which does not depend on the chosen closed
family of crystals, and thus proves the uniqueness. It also shows that B(A) does not depend on A,
as soon as a closed family exists.
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