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LARGE DEVIATIONS AT EQUILIBRIUM FOR A
LARGE STAR-SHAPED LOSS NETWORK

By Carl Graham and Neil O’Connell

CMAP, École Polytechnique and BRIMS, Hewlett-Packard Labs

We consider a symmetric network composed of N links, each with
capacity C. Calls arrive according to a Poisson process, and each call con-
cerns L distinct links chosen uniformly at random. If each of these links
has free capacity, the call is held for an exponential time; otherwise it is
lost. The semiexplicit stationary distribution for this process is similar to
a Gibbs measure: it involves a normalizing factor, the partition function,
which is very difficult to evaluate. We let N go to infinity and keep fixed
the rate of call attempts concerning any link. We use asymptotic combina-
torics and recent techniques involving the law of large numbers to obtain
the asymptotic equivalent for the logarithm of the partition function and
then the large deviation principle for the empirical measure of the occu-
pancies of the links. We give an explicit formula for the rate function and
examine its properties.

1. Introduction. We consider a large network composed of links num-
bered 1 to N, each with capacity C. Calls arrive as a Poisson process. Each
call chooses a route, uniformly at random, in the set of all possible routes,

�N = �subsets of L distinct links among 1�2� � � � �N��(1.1)

The call is lost if any link on the chosen route is full, otherwise it holds one
channel on each of these links for an exponential time, after which it releases
all of these L channels simultaneously. Arrivals, route choices, and call dura-
tions are all independent.
This model corresponds to many situations of simultaneous service, such

as telecommunication or computer networks, locking of items in data-bases,
parallel computing or job processing in factories. It has historically been called
“star-shaped,” since in the case L = 2 it corresponds to a communication
network with N terminal nodes joined by raylike links to a central station,
through which calls are routed. See [13], [14], [9] and [8].
A (huge) Markovian description of the network is given by YN = �YNr �r∈�N ,

where the process YNr counts the number of ongoing calls on route r. The
process

XNi =
∑

r∈�N� i∈r
YNr(1.2)

counts the number of occupied channels on link i, and the simultaneous
releases prevent �XNi �1≤i≤N from being Markovian. The processes YNr and
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XNi have sample paths in the Skorohod space ���+� �0�1� � � � � C��. A relevant
tractable quantity is the empirical measure µN = �1/N�∑Ni=1 δXNi , which has
samples in the space � ����+� �0�1� � � � � C��� of probability measures on the
Skorohod space, and its process of time-marginals,

X̄N = �X̄Nt �t≥0� X̄Nt =
1
N

N∑
i=1
δXNi �t��(1.3)

We can identify � = � ��0�1� � � � � C�� with the C-dimensional simplex, and
X̄N has sample paths in ���+�� � and records the occupancies of the links
averaged over the network.
In this paper, we obtain a large deviation principle (LDP) for the stationary

distribution of X̄N, as N goes to infinity. We keep the arrival rate seen by
each link equal to ν, thus the arrival rate on any route r in �N is given by

νN =
ν(
N−1
L−1

) �(1.4)

An accepted call lasts an exponential time of parameter λ.
We may note that the evolution of a link j is given by the action of the gen-

erator of the Markov process YN on functions depending only on XNj . In this
asymptotic regime, the contribution of call arrivals can be expressed asymp-
totically as a fixed function of XNj and of the empirical measure of L-tuples
of the �XNi �1≤i≤N, which corresponds to relatively weak L-body mean-field
interaction in statistical mechanics terminology. The simultaneous release of
L channels at each call termination, along the corresponding route, yields
much more complex terms, corresponding to more local and strong interac-
tion. See [4], [5] and [6].
We shall not directly use such dynamical expressions. We start from a classi-

cal semiexplicit expression for the stationary distribution, given, for example,
in [13] and [14]. It contains a normalizing term, the partition function, which
must be evaluated. We express this term as a sum, over the state space of X̄N,
of combinatorial terms. Using as a key ingredient the law of large numbers
(LLN) obtained [13] for X̄N, we prove that the asymptotic equivalent of the
logarithm of this sum can be deduced from the equivalents of the logarithm
of its summands near the LLN limit.
The large deviation principle will also require finding the equivalents for

the logarithms of the summands at each point of the state space, with some
uniformity. We obtain these equivalents using combinatorics related to the
occupation problem in [7]. We eventually obtain a LDP with an explicit for-
mula for the rate function. We prove that the rate function has a unique local
minimum (which is at the LLN limit), is strictly positive everywhere except at
this minimum (at which it vanishes), and is locally uniformly convex at this
point. The rate function is not convex in general, which denotes rather strong
interaction. We give a fairly complete description of its curvature.
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The idea of using laws of large numbers to obtain large deviation principles
seems to be quite useful, and has been exploited to an even greater extent
than here, for a variety of applications, by O’Connell [10]–[12].
Large deviations results have been obtained for a class of networks, which

includes this model, under a different asymptotic regime, by Chang and Wang
[1]. In this regime, the topology of the network remains fixed while the capacity
and arrival rate go to infinity.
The outline of the paper is as follows. In Section 2, we present some pre-

liminary material. In Section 3, we simplify the asymptotic evaluation of the
partition function using Whitt’s law of large numbers. In Section 4, we com-
pute the necessary combinatorial asymptotics. We present the large deviation
principle in Section 5 and a detailed analysis of the rate function in Section 6.
In Section 7 we present some pictures.

2. Preliminaries.

2.1. Some pathwise results. Whitt [13] gives a functional law of large num-
bers (LLN) on X̄N, given that X̄N0 satisfies a LLN; he deduces a LLN for the
stationary distribution. The limit process �Qt�t≥0 satisfies the nonlinear ordi-
nary differential equation (ODE),

Q̇t�0� =−ν�1−Qt�C��L−1Qt�0� + λQt�1��
� � �

Q̇t�k� = ν�1−Qt�C��L−1�Qt�k− 1� −Qt�k��
+λ��k+ 1�Qt�k+ 1� − kQt�k���

� � �

Q̇t�C�= ν�1−Qt�C��L−1Qt�C− 1� − λCQt�C�

(2.1)

on � . We set ρ = ν/λ and ρN = νN/λ. Any fixed point qρ of this ODE satisfies

kqρ�k� = ρ
(
1− qρ�C�

)L−1
qρ�k− 1�� k = 1�2� � � � � C�(2.2)

which is solved in terms of qρ�0� as

qρ�k� = qρ�0�
(
ρ
(
1− qρ�C�

)L−1)k
k!

� k = 0�1� � � � � C�(2.3)

and such a qρ is in � if and only if we have qρ�k� ≥ 0 and

C∑
k=0
qρ�k�=1 or equivalently,

qρ�0�=
(
C∑
k=0

(
ρ
(
1− qρ�C�

)L−1)k
k!

)−1
�

(2.4)
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Thus qρ is a fixed point in � if and only if the blocking probability qρ�C�
satisfies

qρ�C� =
(
C∑
k=0

(
ρ
(
1− qρ�C�

)L−1)k
k!

)−1 (ρ(1− qρ�C�)L−1)C
C!

(2.5)

in �0�1�. This corresponds to the Erlang fixed point approximation; see [9] and
[14]. The r.h.s. of (2.5) is a continuous decreasing function of qρ�C� which is
strictly positive for qρ�C� = 0 and tends to 0 as qρ�C� tends to 1, hence there
is a unique solution qρ�C� which is in �0�1�. Thus there is a unique fixed point
qρ to (2.1), determined by (2.3) and (2.5), and qρ belongs to the interior � o

of � .
Let the first moment or mean occupancy of α ∈ � be �α� =∑Ck=0 kα�k�. By

(2.2),

�qρ� =
C∑
k=0
kqρ�k� = ρ�1− qρ�C��L�(2.6)

A natural important problem is to obtain rates of convergence for this LLN.
Let us recall some results obtained by sample path considerations. Graham
and Méléard [3] prove propagation of chaos in total variation norm on path
space for an initially empty network: there is a law Q on ���0�T�� �0�1� � � � �
C��, defined by a tree construction and unique solution to a nonlinear martin-
gale problem, such that �� �XN1 � � � � �XNk � −Q⊗k� ≤ k2C�T�/N. This implies
the convergence in probability of µN toQ and of X̄N = �X̄Nt �t≥0 to �Qt�t≥0 and
can be extended to more general initial conditions satisfying a LLN. Graham
and Méléard [4] and Hunt [8] prove a functional central limit theorem for X̄N

for appropriate initial conditions, with an Ornstein–Uhlenbeck process as the
limit. Graham and Méléard [5] and [6] also prove functional large deviation
results, complete only for C = 1.

2.2. The stationary distribution. The irreducible Markov process YN =
�YNr �r∈�N has a unique stationary distribution on

� N =
{
m = �mr�r∈�N � mr ∈ ��

∑
r∈�N� i∈r

mr ≤ C� ∀ i ∈ �1� � � � �N�
}

given using the notation �m� =∑r∈�N mr by
π̂N�m�=Pst�YNt =m� = 1

ZNρ

∏
r∈�N

�ρN�mr
mr!

= 1
ZNρ

ρ�m�(
N− 1
L− 1

)�m� ∏
r∈�N

1
mr!
� m ∈ � N�

(2.7)
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where the normalizing factor or partition function ZNρ is given by

ZNρ =
∑

m∈� N

ρ�m�(
N−1
L−1

)�m� ∏
r∈�N

1
mr!
�(2.8)

Computing this factor is a NP-complete problem, and good approximations
are needed; for further discussions and references, see [14].
This gives the distribution πN on � of X̄Nt in equilibrium. There is a well-

defined function fN� � N �→ � such that X̄Nt = fN�YNt �; see (1.2) and (1.3).
We set

� N�α� =
{
m ∈ � N� fN�m� = α

}
� α ∈ �

and obtain

πN�α�=Pst�X̄Nt = α�

= 1
ZNρ

ρN�α�/L(
N−1
L−1

)N�α�/L ∑
m∈� N�α�

∏
r∈�N

1
mr!
� α ∈ � �

(2.9)

where we use that (considering the total number of occupied links in the
network)

∀m ∈ � N�α�� N�α� = L�m� ≤NC�(2.10)

3. The law of large numbers and the partition function. Pathwise
results do not extend directly to the stationary distributions: it is difficult
to exchange the N → ∞ and t → ∞ limits. Whitt [13] achieves this by a
compactness–uniqueness method (see Theorem 3 and Section III in [13] or
Section 4 in [9]) and obtains the functional law of large numbers below. The
LLN result for fixed time was later proved from direct computations on the
partition function; see in [14] the extensions in Section 4 of Theorem 2.4 and
Corollary 2.6.

Theorem 3.1. We have equivalently, with qρ the fixed point given by (2.3)
and (2.5),

lim
N→∞

πN = δqρ weakly� lim
N→∞

X̄Nt = qρ in probability at equilibrium.

This convergence is uniform in t on bounded intervals.

We now investigate the asymptotics of log ZNρ for large N. We set

σ�N�α� = ∑
m∈� N�α�

∏
r∈�N

1
mr!

(3.1)
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and for any set B included in � , we obtain from (2.9),

log πN�B� = log
∑
α∈B

ρN�α�/L(
N−1
L−1

)N�α�/L σ�N�α� − log ZNρ �(3.2)

The sum has a support of cardinality less than �N + 1�C, since it is included
in the set of α in � such that Nα�0�, Nα�1�� � � � �Nα�C� are integers. We
bound this sum between its maximal term and its maximal term multiplied
by �N+ 1�C and set

K�N�α� = �α�L− 1
L

log N− �α�
L

log �ρ�L− 1�!� − 1
N
log σ�N�α��(3.3)

with K�N�α� = +∞ for any α not in the support of the sum, and obtain

log πN�B� = −N inf
α∈B
K�N�α� − log ZNρ +O�log N��(3.4)

We use this formula and the LLN to simplify the evaluation of ZNρ .

Theorem 3.2. For any neighborhood B of the law qρ given by (2.3) and
(2.5),

log ZNρ = −N inf
α∈B
K�N�α� +O�log N� + oB�1��

Proof. Theorem 3.1 implies that for any neighborhood B of qρ, the left-
hand side of (3.4) goes to 0 when N goes to infinity. Hence the result. ✷

In the future, we shall obtain an asymptotic equivalent for K�N�α�, for α
in a neighborhood of qρ, which is continuous and nonzero, and then use this
theorem, for a sequence of open balls B shrinking to qρ, in order to deduce an
equivalent for log ZNρ .

4. Some asymptotic combinatorics. We restrict our attention at first
to α in the state space �N for X̄N, given by

�N = �α ∈ � � Nα�0��Nα�1�� � � � �Nα�C��N�α�/L ∈ ���

Lemma 4.1. Let d�N�α� be the number of ways of setting up N�α�/L dis-
tinguishable calls so that the resulting network occupancy m is in � N�α� (with
�m� =N�α�/L). Then

d�N�α� = ∑
m∈� N�α�

�m�!∏
r∈�N mr!

= �m�!σ�N�α��

Proof. For each m ∈ � N�α�, the multinomial coefficient �m�!�∏r∈�N
mr!�−1 counts the number of ways of partitioning �m� distinguishable balls
in successive subsets of size mr for r in �N (which we order for this purpose).
Each possible set-up of �m� calls giving occupancy m is clearly in one-to-one
correspondence with such a partitioning. ✷
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Proposition 4.2. Let w�N�α� be the number of ways of dropping �m� =
N�α�/L distinguishable groups of L distinguishable balls in N distinguish-
able boxes, so that the balls in each group fall in distinct boxes and that there
are Nα�k� boxes with k balls, k = 0�1� � � � � C. Then w�N�α� = L!�m�d�N�α�
and hence

σ�N�α� = w�N�α�
(
N�α�
L

!L!N�α�/L
)−1
�

Proof. Each box corresponds to a link, and each group of L balls to a call.
There are L! different ways to drop these L balls in a given subset of L boxes
(corresponding to a given route), hence w�N�α� = L!�m�d�N�α�. We express
d�N�α� using Lemma 4.1 to obtain the formula for σ�N�α�. ✷

The definition of w�N�α� recalls the occupancy problem (see [7] II-5) with
the additional constraint that balls in a group must not fall in the same box.
This corresponds essentially to the fact that routes are constituted ofL distinct
links.

Proposition 4.3. Let w+�N�α� be the number of ways of droppingN�α�/L
distinguishable groups of L distinguishable balls in N distinguishable boxes,
so that there are Nα�k� boxes with k balls, k = 0�1� � � � � C. This is simply the
number of ways of dropping N�α� balls in N boxes with that given occupancy
of the boxes. Given one of these ways of dropping the balls, let a�N�α� be the
number of permutations of the balls for which balls in a group do not fall in
the same box. Then

w+�N�α� =
N!∏C

k=0�Nα�k��!
�N�α��!∏C
k=0�k!�Nα�k�

≥ w�N�α� = w+�N�α�
a�N�α�
�N�α��! �

Proof. This formula expresses w+�N�α� as the product of two multino-
mial coefficients, the first counting all possible partitions of the N boxes in
subsets of Nα�k� boxes which are to contain k balls, the second all possi-
ble possible partitions of the N�α� balls in Nα�k� subsets of k balls, k =
0�1� � � � � C; see [7] II-5. More precisely, the second multinomial coefficient is
the quotient of the number �N�α��! of permutations of the balls in a given
configuration counted in w+�N�α� by the number of such permutations which
keep any ball in its original box, and hence give rise to the same global configu-
ration. We can express w�N�α� similarly as w+�N�α�, only replacing �N�α��!
by the number a�N�α� of permutations for which balls in a group do not fall
in the same box. ✷

We wish to show that w�N�α� and w+�N�α� are asymptotically close, with
some uniformity on α. We first give a loose lower bound for w�N�α�, then an
appropriately tight and uniform lower bound on w�N�α�/w+�N�α�.

Remark. For arbitrarily largeN we may find α such that w�N�α� = 0 and
w+�N�α� ≥ 1; for L = 2 and C = 2 we take α�2� = 1/N and α�0� = 1− 1/N.
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Lemma 4.4. Let α in �N be such that N�α� ≥ CL. Then

w�N�α� ≥ N!∏C
k=0�Nα�k��!

L!N�α�/L ≥ 1�

Proof. The multinomial number counts the possible choices on the boxes,
and L!N�α�/L counts the permutations of balls within each group (balls in a
group are in distinct boxes, hence these permutations give distinct configura-
tions). Thus, it is sufficient to prove that for N�α� ≥ CL there is at least one
way to place the balls as in the definition of w�N�α�, once we have fixed the
Nα�k� boxes which should hold k balls, for k = 0�1� � � � � C.
We fix these boxes, and call any box which should hold k balls “a box of

type k.” We now prove by induction on C that for N�α� ≥ CL there is at least
one way to place k balls in every box of type k, so that balls in a group do
not fall in the same box. This is obvious for C = 1. Let us assume it true for
C− 1 ≥ 1.
For Nα�C� ≥ L, we place the balls by layers. We place balls successively

in each box of type 1, then in each box of type 2, and so on until we place
balls successively in each box of type C, thus completing the first layer. The
boxes of type 1 now hold 1 ball each. We go back and place balls successively
in each box of type 2, then in each box of type 3, and so on until we place balls
successively in each box of type C, thus completing the second layer. The type
2 boxes now hold 2 balls each. We continue in a similar manner until there
are no balls left. Since there are at least L boxes of type C, we never place
balls from the same group in the same box, and we eventually fill up all boxes
appropriately.
ForNα�C� ≤ L−1, we take a group of L balls and place one ball in each box

of type C. There remains L−Nα�C� balls in the group to place properly. There
is a total ofN�α�−Nα�C� ≥ CL−L+1 balls left to place; since the boxes are
either of type k with k ≤ C−1 or of type C and contain already one ball, there
must be at least �CL−L+ 1�/�C− 1� > L boxes which can each accept in the
future at least one ball. So we can place the remaining L−Nα�C� balls of the
group in separate boxes distinct from the Nα�C� ones already used. Then we
are left with N�α� −L ≥ �C− 1�L balls to place according to a configuration
in which the maximal number of balls in a box is C− 1, and by induction we
know there is at least a way of doing so. ✷

Proposition 4.5. We have, for any α in �N,

0 ≥ log
w�N�α�
w+�N�α�

≥ O�logN�

with an O�logN� term uniform for N ≥ 2 and α in �N such that N�α� ≥ CL.

Proof. The upper bound is obvious (see Proposition 4.3) and w�N�δ0� =
w+�N�δ0� = 1. For α �= δ0 we consider N large enough so that N�α� ≥ CL,
and shall bound a�N�α� from below. The boxes are fixed, and the order of
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placement of the balls in the boxes is taken into account: we call “spot” the
conjunction of a box and an order of placement in the box. After the �j− 1�th
group of L balls has been placed, �j−1�L spots have been occupied. The first
ball in the jth group can thus be placed in at least N�α� − �j − 1�L spots,
the second in N�α� − �j − 1�L − C spots (the placement of the first ball in
a box prevents the placement of the second ball in the at most C spots in
the box) and so on, until the last ball in the group can be placed in at least
N�α� − �j − 1�L − �L − 1�C ≥ 1 spots (only the spots in L − 1 boxes, each
with at most C spots, are forbidden). After thus placing groups of L balls for
j = 1�2� � � � � �N�α�/L� − C, there are C groups left, and Lemma 4.4 applied
to this restricted placement problem with fixed boxes states that there is at
least �L!�C ways to do so. Thus

a�N�α� ≥ �L!�C
�N�α�/L�−C∏

j=1

L−1∏
k=0
�N�α� − �j− 1�L− kC��

Since �N�α��! = �LC�!∏�N�α�/L�−Cj=1
∏L−1
k=0 �N�α�−�j−1�L−k� we obtain, using

Proposition 4.3,

w�N�α�
w+�N�α�

= a�N�α��N�α��! ≥
L!C

�LC�!
�N�α�/L�−C∏

j=1

L−1∏
k=0

(
1− k�C− 1�
N�α� − �j− 1�L− k

)

and a simple bound yields

w�N�α�
w+�N�α�

≥ L!C

�LC�!
�N�α�/L�−C∏

j=1

(
1− �L− 1��C− 1�
N�α� − jL+ 1

)L−1
�

We take the logarithm. Classically,

�N�α�/L�−C∑
j=1

log
(
1− �L− 1��C− 1�
N�α� − jL+ 1

)

≥
∫ �N�α�/L�+�1/L�−1
C+�1/L�−1

log
(
1− �L− 1��C− 1�

xL

)
dx�

which we compute to obtain

log
w�N�α�
w+�N�α�

≥ L− 1
L

(
�N�α� + 1−L� log

(
1− �L− 1��C− 1�

N�α� + 1−L
)

+�CL+ 1−L� log�CL+ 1−L�

−�L− 1��C− 1� log�N�α� +C−CL� −C log C
)

+C log L!− log�LC�!
and the right-hand term is O�logN� with the uniformity we have stated. ✷
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For α and β in � we define the entropy and relative entropy (or Kullback
information),

H�α� = −
C∑
k=0
α�k� log α�k�� H�α�β� =

C∑
k=0
α�k� log α�k�

β�k� �(4.1)

(with the conventions 0 log 0 = 0, etc.) and the continuous functions

K�α� = −H�α� +
C∑
k=0
α�k� log k!

(4.2)
−�α�L− 1

L
�log�α� − 1� − �α�

L
log ρ�

J�α� =K�α� −K�qρ� =H�α�qρ�
(4.3)

−L− 1
L

(
�qρ� − �α� + �α� log

�α�
�qρ�

)
�

Sanov’s theorem states that α �→ H�α�qρ� is the rate function for the large
deviation principle for the empirical measure of i.i.d. random variables of law
qρ. We shall prove that the rate function for the LDP for the star-shaped
network is given by J. This result can be interpreted as a perturbation of
Sanov’s theorem, strong enough to modify the convexity properties of the rate
function. See [2], Section 2.1.1.

Theorem 4.6. We have, for any α in �N,

K�N�α� =K�α� +O
(
logN
N

)
�

see (3.3) and (4.2), with a O��log N�/N� remainder term bounded below uni-
formly, and bounded above uniformly for N ≥ 2 and α in �N such that
N�α� ≥ CL.

Proof. The statement for α = δ0 is obvious. Otherwise, Propositions 4.2
and 4.3 give

log σ�N�α� = log N!−
C∑
k=0

log�Nα�k��!+ log�N�α��!−N
C∑
k=0
α�k� log k!

− log N�α�
L

!− N�α�
L

log L!+ log w�N�α�
w+�N�α�

�

Consider the Stirling formula, log n! = n�log n − 1� + O�log n�; see [7]. We
have log 0! = 0�log 0− 0� and log 1! = 1�log 1− 1� + 1. Since the function log
is increasing and log 2 > 0, we have log NC ≥ logN�α� > 0 for N�α� ≥ 2 and
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logN ≥ logNα�k� > 0 for Nα�k� ≥ 2. We obtain, using these results and
Proposition 4.5,

log σ�N�α� =N�log N− 1� −N
C∑
k=0
α�k��log Nα�k� − 1�

+N�α��log N�α� − 1� −N
C∑
k=0
α�k� log k!

− N�α�
L

(
log
N�α�
L

− 1
)
− N�α�

L
log L!+O�log N�

with an O�log N� remainder term uniformly bounded above and bounded
below uniformly for N ≥ 2 and α in �N such that N �α� ≥ CL. Since∑C
k=0 α�k�=1, we have

log σ�N�α� =NH�α� −N
C∑
k=0
α�k� log k!+N�α�L− 1

L
�log N�α� − 1�

− N�α�
L

log�L− 1�!+O�log N�
and we conclude considering (3.3) and (4.2). ✷

5. The large deviation principle.

Theorem 5.1. We have [see (2.3), (2.6) and (4.2)]

lim
N→∞

1
N
logZNρ = −K�qρ� = − log qρ�0� −

L− 1
L

�qρ��

Proof. We use Theorem 3.2 for a sequence of open balls B shrinking
to qρ and not containing δ0. We may then use Theorem 4.6 with a uniform
remainder. We obtain the result using the continuity ofK at qρ and expliciting
K�qρ�. ✷

Theorem 5.2. A large deviation principle with continuous rate function J,
defined in (4.3), holds for �πN�N≥1; for any Borel set B included in � ,

− inf
α∈Bo
J�α� ≤ lim inf

N→∞
1
N
log πN�B� ≤ lim sup

N→∞

1
N
logπN�B� ≤ − inf

α∈B
J�α��

We have J�α� = H�α�qρ� if and only if �α� = �qρ�, else J�α� < H�α�qρ�. Note
that J is continuous in � , C∞ in its interior � o and J�qρ� = 0.

Proof. Let a Borel set B be given. We divide equation (3.4) by N and
obtain

1
N
log πN�B� = − inf

α∈B
K�N�α� − 1

N
logZNρ +O

(
log N
N

)

and use Theorems 4.6 and 5.1; we recall that K�N�α� = +∞ for α /∈ �N.
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The LDP lower bound follows easily from the classical

lim inf
N→∞

(
− inf
α∈B
K�N�α�

)
= − lim sup

N→∞

(
inf
α∈B
K�N�α�

)
≥ − inf

α∈B

(
lim sup
N→∞

K�N�α�
)
�

hence using the continuity of K (we have a limit only for α in B ∩�N),

lim inf
N→∞

(
− inf
α∈B
K�N�α�

)
≥ − inf

α∈Bo

(
lim sup
N→∞

K�N�α�
)
= − inf

α∈Bo
K�α��

For the upper bound, we use uniform convergence. Theorem 4.6 yields

− inf
α∈B
K�N�α� ≤ − inf

α∈B
K�α� +O

(
log N
N

)

with a uniform remainder term, hence

lim sup
N→∞

(
− inf
α∈B
K�N�α�

)
≤ − inf

α∈B
K�α�

form which we deduce that LDP upper bound.
The last statement follows from the study of the function y �→ 1 − y −

y log y. ✷

6. The shape of the rate function. So that the LDP may be of any
practical use, we give an appropriate description of the rate function J. We
already know that it is nonnegative and continuous on � and C∞ in � o,
that J�qρ� = 0 and that J�α� = H�α�qρ� if and only if �α� = �qρ�, otherwise
J�α� < H�α�qρ�.
The function J is defined on � , which is naturally embedded in �C+1.

We differentiate twice at α in � o considered as a subset of �C+1, but only
the restriction of these differentials to �α = �β − α� β ∈ � � ⊂ � = �h ∈
�C+1� h0 + h1 + · · · + hC = 0� is pertinent. The space �α can be interpreted as
the tangent space of � o.
Using the last formulation in (4.3), for i� j = 0�1� � � � � C,

∂iJ�α�=1+ log
α�i�
qρ�i�

− iL− 1
L

log
�α�
�qρ�

�

∂ijJ�α�=
δij

α�i� −
L− 1
L

ij

�α� �
(6.1)

We denote the product of two matrices A and B (the number of columns
of A coinciding with the number of rows of B) by AB or A · B. If A is a
row vector and B a column vector, A · B coincides with the canonical scalar
product. We consider DJ�α� as a row vector acting on column vectors h, and
the notation DJ�α� ·h is coherent with classical differential notation. We have
DJ�qρ� = �1�1� � � � �1�, with C + 1 terms, and DJ�qρ� · h = 0 for any h in
� , which is natural since there is a minimum in � of J at qρ. Somewhat
surprisingly, D2J does not depend on ρ.



116 C. GRAHAM AND N. O’CONNELL

Theorem 6.1. The law qρ is the only point α in � o at which DJ�α� ·h = 0
for all h in � ; hence it is the only point in� o at which there is a local extremum
of J. Moreover qρ is the only point in � at which there is a local minimum,
and in particular J�α� > 0 for any α in � − �qρ�, while J�qρ� = 0.

Proof. IfDJ�α�·h = 0 for all h in � , thenDJ�α� is collinear to �1� � � � �1�,
and ∂iJ�α� does not depend on i. Hence, for i = 1� � � � � C,

log
α�i�
qρ�i�

= log
α�i− 1�
qρ�i− 1�

+ L− 1
L

log
�α�
�qρ�

and using (2.2) and (2.6),

α�i�
α�i− 1� =

qρ�i�
qρ�i− 1�

( �α�
�qρ�

)�L−1�/L
= i−1�α��L−1�/Lρ1/L�

hence

iα�i� = �α��L−1�/Lρ1/Lα�i− 1��(6.2)

Summation over i yields

�α� = �α��L−1�/Lρ1/L�1− α�C���
which implies �α� = ρ�1−α�C��L, and going back to (6.2), we see that α solves
the recurrence relation (2.2) of which we know that the unique solution in �
is qρ.
For any boundary point α of � except δ0, ∂iJ�α� = −∞ whenever α�i� = 0,

and ∂1J�δ0� = −∞. Hence there cannot be a local minimum at the bound-
ary. ✷

We deduce classically exponential estimates, and a strong LLN.

Theorem 6.2. There is exponential decay of πN�A� for any closed set A not
containing qρ, and in equilibrium �X̄Nt �N≥1 converges a.s. to qρ, for any t ≥ 0.

Proof. Let A be a closed subset of � not containing qρ, which is compact
since � is compact. The continuous function J attains a minimum m > 0 on
A and, using the LDP upper bound, for any 0 < a < m, for sufficiently large
N, πN�A� ≤ e−Na. Thus,∑

N≥1
Pst�X̄Nt ∈ A� =

∑
N≥1
πN�A� <∞�

hence by the Borel–Cantelli lemma Pst�X̄Nt ∈ A for infinitely many N� = 0.
The closed set A being arbitrary, a.s. convergence of X̄Nt to qρ can be deduced
easily. ✷



LARGE DEVIATIONS FOR STAR-SHAPED NETWORK 117

We denote by A∗ the transposed matrix of A. For v the column vector
�0�1� � � � � C�∗ and diag�α� and diag�α�−1 = diag�α−1� the diagonal matrices
diag�α�0�� α�1�� � � � � α�C�� and diag�α�0�−1� α�1�−1� � � � � α�C�−1�,

D2J�α� = diag�α�−1 − L− 1
L

1
�α�vv

∗(6.3)

is the sum of a positive definite matrix of which we know the inverse and of a
matrix of rank 1. This particular structure enables us to study its invertibility
and signature (number of strictly positive and negative terms in an orthogonal
decomposition).
Let Q�α� be the restriction of D2J�α� to � = �h� h0 + h1 + · · · + hC = 0�,

v⊥ be the space of column vectors x orthogonal to v, such that v∗x = 0, and
	 = v⊥ ∩ � = �h ∈ � � �h� = 0�. Actually, we consider 	α = v⊥ ∩ �α =
�β − α� β ∈ � � �β� = �α��, which has a natural interpretation in terms of
mean occupancy.
Denote by �α�2 and Var�α� the second moment and variance of α, respec-

tively. For α ∈ � o we denote by ᾱ the probability measure

ᾱ�i� = iα�i��α� � i = 0�1� � � � � C�(6.4)

Note that ᾱ�0� = 0 and ᾱ�i� > 0 for i = 1� � � � � C, and that

�ᾱ� = �α�2
�α� � �ᾱ− α� = Var�α�

�α� > 0�

(
ᾱ− α)∗ diag�α�−1�ᾱ− α� = Var�α�

�α�2 > 0�

(6.5)

For L ≥ 2 we define on � and �C+1 the second degree polynomial of several
variables

F�α� = L

L− 1�α� − Var�α� = �α�
2 +

(
1+ 1
L− 1

)
�α� − �α�2�(6.6)

Clearly F�δ0� = 0 and F�δi� = iL/�L− 1� > 0 for i = 1� � � � � C.
We use a basis of �C+1 such that α = �α0� α1� � � � � αC� in the canonical basis

is represented by �β0� β1� � � � � βC�. We take β0 = �α� =
∑C
k=0 kαk. For C = 1,

�α�2 = �α� and F�α� = β0�β0 + 1/�L − 1�� vanishes uniquely for α = δ0
in � . If C > 1, we further take β1 = �α�2 − �1 + 1/�L− 1���α�, and then
F�α� = �β0�2 − β1, hence the equation F�α� = 0 defines in �C+1 a cylinder
with parabolic base �β0�2 = β1 in the appropriate two-dimensional vector
subspace, �β2� � � � � βC� being free to range over a C− 1 dimensional subspace.
This cylinder delimitates a convex open set �F�α� < 0�, which has a (possibly
empty) convex open intersection with � o.
A vector space X admits a decomposition Y + Z if Y and Z are vector

subspaces such that for any x in X, there are unique y in Y and z in Z with
x = y+ z. The decomposition is orthogonal for a quadratic form Q if we have
y∗Qz = 0 for any column vectors y in Y and z in Z. We denote by vect�x� the
line �x = �ax� a ∈ �� generated by the vector x.
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Theorem 6.3. For any α ∈ � o the decomposition � = 	 + vect�ᾱ − α� is
orthogonal forQ�α�. The restriction ofQ�α� to 	 coincides with the restriction
of diag�α�−1 and hence is positive definite (of rank C− 1), and

�ᾱ− α�∗Q�α��ᾱ− α� =
(
1− L− 1

L

Var�α�
�α�

)
Var�α�
�α�2 = F�α�L− 1

L

1
�α�

Var�α�
�α�2 �

Proof. We represent � in the basis such that h ∈ � has coordinates
�h1� � � � � hC�, with h0 = −�h1 + · · · + hC�. Since diag�α�−1 is positive definite,
the restriction of the corresponding quadratic form on � is positive definite.
We denote by B−1 its matrix. Then

h∗ diag�α�−1h =
C∑
i=0

1
α�i�h

2
i =

1
α�0��h1 + · · · + hC�

2 +
C∑
i=1

1
α�i�h

2
i � h ∈ �

and setting u = �1� � � � �1�∗, with C terms, and A = diag�α�1�� � � � � α�C��, we
have

B−1 = A−1 + 1
α�0�uu

∗� B = A−Au�Au�∗ = A−Auu∗A�(6.7)

where BB−1 = IC is easily checked using u∗Au = α�1�+· · ·+α�C� = 1−α�0�.
We set w = �1� � � � � C�∗ in this basis of � . Then (6.3) implies

Q�α� = B−1 − L− 1
L

1
�α�ww

∗(6.8)

and the restrictions of Q and B−1 to w⊥ are equal. Since w∗Bw > 0, then
Bw �∈ w⊥ for the canonical scalar product in this basis. Since x ∈ w⊥ implies
x∗Qx = x∗B−1x and x∗QBw = 0, the decomposition of � into w⊥ + vect�Bw�
is orthogonal for Q. Then

Bw = Aw− �u∗Aw�Au = Aw− �α�Au = �α��ᾱ− α��

�Bw�∗QBw =
(
1− L− 1

L

1
�α�w

∗Bw
)
w∗Bw�

w∗Bw = w∗Aw− �u∗Aw�2 = �α�2 − �α�2 = Var�α��
The theorem follows by writing down explicitly these terms, in particularw⊥ =
	 . ✷

We now finish describing the function J. A subset K is uniformly convex
in a vector space E with norm � · � if there is k > 0 such that

inf
x∈E−K

∥∥∥x− a+ b
2

∥∥∥ ≥ k�a− b�� a� b ∈K�

A function f from �d to � is uniformly convex if its epigraph ��x� z� ∈ �d ×
�� f�x� ≤ z� is uniformly convex, and is locally uniformly convex at x if its
restriction to an open ball containing x is uniformly convex. If f is twice
differentiable at x and its second differential matrix at x has strictly positive
eigenvalues, then f is locally uniformly convex at x.
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Theorem 6.4. In the independent case L = 1, J�·� = H�·�qρ� is uniformly
convex in � . When C = 1 and L ≥ 2, or C = 2 and L = 2, Q is positive definite
and J is uniformly convex in � . When C ≥ 2 and L ≥ 3, or C ≥ 3 and L ≥ 2,
Q has signature �C− 1�1� in the nonempty convex open set �F�α� < 0� ∩� o,
has signature �C − 1�0� on the parabolic cylinder �F�α� = 0� ∩ � o and has
signature �C�0� in the nonempty open set �F�α� > 0� ∩ � o, at each point of
which J is locally uniformly convex.

Proof. If C = 1, then �α�2 = �α� and F�α� > 0 in � o. For C = 2 we have

F�α� = α�1�2 + 4α�1�α�2� + 4α�2�2 + 1
L− 1α�1� −

(
2− 2
L− 1

)
α�2��

Thus if L = 2, then F�α� > 0 in � o and if L ≥ 3, then

F�α� ≤ α�1��α�1� + 4α�2� + 1/2� − α�2��1− 4α�2��
and F�α� < 0 for 0 < α�2� < 1/4 and α�1� sufficiently small. For C = 3 and
L ≥ 2,

F�α� ≤ �α�2 + 2�α� − �α�2 = �α�1� + 2α�2� + 3α�3��2 + α�1� − 3α�3�
≤ �α�1� + 2α�2��2 + 6�α�1� + 2α�2��α�3� + α�1�

−3α�3��1− 3α�3��
and F�α� < 0 for 0 < α�3� < 1/3 and α�1� and α�2� sufficiently small. We
conclude for all C ≥ 3 and L ≥ 2 by a continuity argument. ✷

We now obtain a good understanding of the behavior of J near qρ.

Theorem 6.5. The quadratic form Q�qρ� is definite positive (of rank C) on
� , and the rate function J is locally uniformly convex at qρ.

Proof. We obtain, using (2.2),

�qρ�2 =
C∑
k=1
k2qρ�k� = ρ

(
1− qρ�C�

)L−1 C∑
k=1
kqρ�k− 1�

= ρ(1− qρ�C�)L−1(�qρ� −Cqρ�C� + 1− qρ�C�)
and using (2.6) and (6.6),

F�qρ�=ρ
(
1− qρ�C�

)L−1(�1− qρ�C���qρ� + 1
L− 1�1− qρ�C��

− �qρ� +Cqρ�C�
)

=ρ(1− qρ�C�)L−1
(
�C− �qρ��qρ�C� +

1
L− 1�1− qρ�C��

)
> 0�

(6.9)

where we conclude using the capacity constraint �qρ� ≤ C. ✷
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Fig. 1. C = 2, ρ = 10, L = 5.

Fig. 2. C = 2, ρ = 10, L = 50.
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Theorem 6.6. Let � be furnished with a norm � · � and � with the corre-
sponding distance (the dimension being finite, all norms are equivalent). Let
B�qρ� ε� denote the ball of radius ε > 0 centered at qρ. Then

lim
N→∞

1
N
log πN�B�qρ� ε�c� = −θε2 +Oε→0+�ε3�

for θ = inf
h∈� � �h�=1

h∗Q�qρ�h > 0�

Proof. Since J is nonnegative continuous on � , vanishes only at qρ and
is convex in a neighborhood of qρ, then for ε > 0 small enough the infimum
of J�α� for α /∈ B�qρ� ε� will be attained at the boundary. A Taylor expansion
gives for any vector h of norm 1 J�qρ + εh� = ε2h∗Q�qρ�h+Oε→0+�ε3�. ✷

7. Some pictures. We present plots of the rate function J for C = 2 and
ρ = 10, as a function of α�1� and α�2�. In Figure 1, L = 5 and in Figure 2,
L = 50. The nonconvexity is quite apparent.
In Figure 1 the origin is at the lower left, the α�1� axis points to the right

and the α�2� axis points to the rear. In Figure 2 we have rotated the per-
spective, and the origin is the bottommost point (at the middle), the α�1� axis
points to the right and the α�2� axis points to the left.
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