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Abstract
The α-determinant is a one-parameter generalisation of the standard 
determinant, with α = −1 corresponding to the determinant, and α = 1 
corresponding to the permanent. In this paper a simple limit procedure to 
construct α-determinantal point processes out of fermionic processes is 
examined. The procedure is illustrated for a model of N free fermions in 
a harmonic potential. When the system is in the ground state, the rescaled 
correlation functions converge for large N to determinants (of the sine kernel 
in the bulk and the Airy kernel at the edges). We analyse the point processes 
associated to a special family of excited states of fermions and show that 
appropriate scaling limits generate α-determinantal processes. Links with 
wave optics and other random matrix models are suggested.
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1. Introduction

Determinantal and permanental processes are point processes whose correlation functions 
ϱn(x1 , . . . , xn) exist for all n ∈ N, and are given by

ϱn (x1 , . . . , xn ) =

⎧
⎨

⎩

det
1 !i,j!n

K(xi, xj) (determinantal)

per
1 !i,j!n

K(xi, xj) ( permanental). (1)

The function K(x, y) is called correlation kernel and can be thought of as the integral ker-
nel of some integral operator. There is no need for us to review the history and ubiquity of 
determinantal and permanental processes in mathematical physics and probability [30, 35, 43, 
44]. Another, perhaps not so well-known class of processes are the so-called α-determinantal 
processes. The α-determinant of a n × n matrix A is

detαA =
∑

σ∈Sn

αn−m(σ)Aσ(1)1Aσ(2)2 · · ·Aσ(n)n (2)

where m(σ) is the number of disjoint cycles in the permutation σ — thus, for example, the 
identity permutation, corresponding to the term A11A22 · · ·Ann contains n cycles and appears 
with weight α0, whereas the term A12A23 · · ·An1, corresponding to a single cycle appears with 
weight αn−1. Namely, we simply replace the signature sgn(σ) = (−1)n−m(σ) by αn−m(σ) in the 
definition of the ordinary determinant detA.

It is clear that

det−1A = detA, det1A = perA, det0 A = A11A22 · · ·Ann. (3)

Vere-Jones [45, 46] introduced α-determinants to treat the probability density functions of 
multivariate binomial and negative binomial distributions in a unified way. Later, Shirai and 
Takahashi [41] utilised the α-determinant to define a parametric family of point processes 
which extend the fermionic and bosonic point processes. Let α ∈ R and K a kernel from say 
R2 to C. An α-determinantal point process with kernel K is defined, when it exists, as the point 
process with n-point correlation functions (n ! 1)

ϱn (x1 , . . . , xn ) = detα
1 !i,j!n

K(xi, xj). (4)

The values α = −1 and α = 1 correspond to determinantal and permanental processes, 
respectively. The case α = 0 corresponds to the Poisson process with intensity K(x, x).

Several authors have established necessary and sufficient conditions for the existence of 
α-determinantal processes. See [34] and references therein.

In this paper, we shall only be concerned with the case α < 0; in this case, a necessary con-
dition for existence is that is that − 1

α ∈ N (otherwise the α-determinants detα K(xi, xj) can 
be negative). If − 1

α ∈ N, and K is self-adjoint with 0 ! K ! − 1
α, then the α-determinantal 

process exists. In fact, it is just a union (or ‘superposition’) of − 1
α  i.i.d. copies of the determi-

nantal process with kernel −αK .
Although α-determinantal processes have been investigated theoretically, concrete realisa-

tions of them have not been discussed as much in the literature. The present paper might be 
thought of as a first step in this direction; hopefully more examples will emerge in time.

The purpose of this paper is to provide an explicit construction of α-determinantal point 
processes as limiting cases arising naturally in a model of N non-interacting fermions in a 
one-dimensional harmonic potential. We consider a family of many-body excited states para-
metrized by a real number a, where a  =  0 corresponds to the fermionic ground state. The 
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associated determinantal process is a block projection process. The first observation of the 
paper is that, as the parameter varies from a  =  0 to a → ∞, the average density of fermions 
crosses over from the Wigner semicircular distribution (in the quantum ground state) to the 
arcsine distribution (corresponding to a fully ‘classical’ excited state); this is consistent with 
the correspondence principle of quantum mechanics. The main result of the paper is that if the 
limit a → ∞ is taken appropriately, then the block projection process associated to the many-
body excited state converges weakly (in the scaling limit) to an α-determinantal process with 
α = −1/2. In the same setting, we also provide the explicit construction of α-determinantal 
processes for general α = −1/m, with m ∈ N. These results are summarised as a theorem in 
section 5.

The outline of the paper is as follows. In the next section we record the spectral properties 
of non-interacting fermions in a harmonic potential. In section 3, we first recall the connection 
between free fermions in the ground state and the GUE processes, and some immediate impli-
cations of this connection; then, we introduce a first example of block projection process and 
we analyse its scaling limits and the convergence to an α-determinantal process. In section 4 
we generalise the construction of block projection processes and show their convergence to 
α-determinantal processes (superposition of sine processes). A summary of the main result—
weak convergence of block projection fermionic processes to α-determinantal processes, fur-
ther remarks and links with wave optics and random matrices conclude the paper (section 5).

Some notation. For a  <  b we use the notation [a . . b) to denote the integer interval 
{⌊a⌋ , ⌊a⌋+ 1, . . . , ⌊b⌋ − 1}. For xi, xj ∈ R we write xij = xi − xj. Denote the complex con-
jugate of z by z.

2. Free fermions in a harmonic potential and determinantal processes

The connection between free fermions and determinantal processes has been known for a long 
time [15, 30, 31, 35, 43]. This connection has been used in various contexts, such as in the 
analysis of a class of matrix models (Moshe–Neuberger–Shapiro model) [22, 36], in the study 
of non-intersecting step-edges on a crystal [11], and in establishing a connection between non-
intersecting Brownian interfaces in the presence of a confining potential and Wishart random 
matrices [37]. However, in the specific context of N non-interacting fermions trapped in a one-
dimensional harmonic potential, the connection to the Gaussian unitary ensemble (GUE) was 
established and used only recently in a series of papers: first somewhat indirectly in [12, 47], 
and then more explicitly in [13, 32] in the context of full counting statistics of fermions. Later, 
this connection has been further exploited quite heavily in calculating various physical prop-
erties of 1-d trapped fermions, such as the correlation functions near the edges of the trapped 
Fermi gas [6, 7, 27], effects of finite temperature and the connection to the Kardar–Parisi–
Zhang equation at finite time [6, 7], computation of the number variance, other linear statistics 
[20, 21, 32, 33] and the entanglement entropy [4]. Free fermions in a one-dimensional non-
harmonic traps, singular or with hard edges such as a box potential (where the determinantal 
process is not GUE), have also been studied [23, 24]. In particular, the relationship between 
fermions in a box with different boundary conditions and the classical compact groups have 
been explored [5, 16]. For a review of some of these recent developements in the physics lit-
erature, see [9]. In this section, we first recall the precise connection between the ground state 
of non-interacting fermions in a harmonic potential and the GUE determinantal process and 
then extend this to a class of special excited states that, in a certain appropriate limit of high 
energy, converges to α-determinantal process with α = −1/2.
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Denote by ψk(x) the Hermite wavefunctions

ψk(x) = hk(x)e−x2/4 , hk(x) =
(−1)k

√√
2πk!

ex2/2 ∂
k

∂xk e−x2/2, k = 0, 1, 2, . . . .

 

(5)

They are solutions of the Schrödinger equation
(
− ∂ 2

∂x2 +
x2

4

)
ψk(x) =

(
k +

1
2

)
ψk(x), x ∈ R, (6)

and form a complete orthonormal system in L2(R; dx). Physically, ψk(x) is an eigenfunction 
of the quantum harmonic oscillator corresponding to the eigenvalue Ek  =  k  +  1/2, i.e. the 
eigenstate of a quantum particle in a harmonic potential at the energy level Ek.

The normalised eigenstates Ψk1 ,...,kN (x1 , . . . , xN) of a system of N spin-polarized fermions 
in the same harmonic potential, are given by antisymmetric linear combinations of the ψk’s, 
and can be conveniently written as Slater determinants

Ψk1 ,...,kN (x1 , . . . , xN) =
1√
N!

det
1 !i,j!N

ψki(xj), with 0 ! k1 < k2 < · · · < kN .

 (7)

They are eigenfunctions of the operator 
∑

i

(
− ∂2

∂x2
i
+ x2

i
4

)
 with eigenvalues 

E = k1 + · · ·+ kN + N/2, in the subspace of completely antisymmetric states 
Ψ(xσ(1 ), . . . , xσ(N)) = sgn (σ)Ψk1 ,...,kN (x1 , . . . , xN). These facts follow from the basic proper-
ties of the determinant.

The modulus square of the wave function Ψ(x1 , . . . , xN) can be interpreted as the joint 
probability density of the particles positions. If we denote J = {k1 , . . . , kN} ⊂ N, we can 
write

|ΨJ(x1 , . . . , xN)|2 =
1

N!
det

1 !i,j!N
KJ(xi, xj), (8)

where

KJ(x, y) =
∑

k∈J

ψk(x)ψk(y) (9)

is the integral kernel of the projection operator onto the N-dimensional subspace 
span {ψk(x) : k ∈ J} ⊂ L2(R; d x). In fact, |ΨJ(x1 , . . . , xN)|2  defines a determinantal point pro-
cess of N particles on R  with respect to dx with kernel KJ(x,y ). The nth correlation function 
of the process is

ϱn (x1 , . . . , xn ) =
N!

(N − n )!

∫
|ΨJ(x1 , . . . , xN)|2 d xn +1 · · · d xN = det

1 !i,j!n
KJ(xi, xj).

 
(10)

The main observation of this paper is that, for special choices of the energy levels 
J ⊂ N, the scaling limit in the bulk of the determinantal process defined by KJ(x, y ) is an  
α-determinantal process.

3. Free fermions

3.1. Ground state and the GUE eigenvalue process

Suppose that J = [0 . . N) corresponding to the wavefunction

F D Cunden et alJ. Phys. A: Math. Theor. 52 (2019) 165202
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ΨJ(x1 , . . . , xN) =
1√
N!

det
1 !i,j!N

ψi−1 (xj). (11)

This is the unique ground state of N non-interacting fermions in a harmonic potential (exactly 
one fermion in each energy state ki  =  i  −  1, i = 1, . . . , N). The ground state energy is

E0 =
∑

k∈[0 . . N)

(k + 1/2) =
N2

2
. (12)

The kernel

KJ(x, y) =
∑

k∈[0 . . N)

ψk(x)ψk(y)

 (13)
coincides with the kernel of the GUE ensemble of random matrix theory. The determinantal 
point process on R  defined by KJ(x, y ) above is know as GUE process.

At first, a large N asymptotics of (13) seems hopeless since the number of terms in the sum 
is N. However, for the special choice J = [0 . . N), one can apply the Christoffel–Darboux 
formula and rewrite the kernel in the form

KJ(x, y) =
√

N
ψN(x)ψN−1 (y)−ψN−1 (x)ψN(y)

x − y
, (14)

which is amenable of a large N analysis by means of the Plancherel–Rotach asymptotic expan-
sions of Hermite polynomials.

It is well-known, for instance, that the number density of particles (one-point function) is 
asymptotic to the semicircular law at leading order in N

ϱ1 (x) = KJ(x, x) N→∞∼ 1
2 π

√
(4 N − x2 )+, (15)

with the normalization 
∫
ϱ1(x)dx = N . Moreover, in the scaling limit in the bulk, the GUE 

process converges to the sine process, a determinantal process on R  with translation invariant 
kernel

lim
N→∞

1
ϱ1 (0 )

KJ

(
x

ϱ1 (0 )
,

y
ϱ1 (0 )

)
=

sinπ(x − y)
π(x − y)

=
sinπx cosπy − cosπx sinπy

π(x − y)
.

 (16)
The behaviour of the process at the endpoints ±

√
4N  of the density is different. At the edges, 

on the scale O(N−1/6) of the typical distance between points, the process converges to the Airy 
process with kernel

lim
N→∞

1
N 1

6
KJ

(√
4 N +

x
N 1

6
,
√

4 N +
y

N 1
6

)
=

Ai(x)Ai′(y)−Ai′(x)Ai(y)
x − y

.

 (17)

3.2. Excited states, the correspondence principle and α-determinants

Consider now the case J =
[
a2M . . (a+ 1)2M

)
, labelling an excited state where 

N fermions occupy N = |J| consecutive levels4 k = a2 M, . . . , (a+ 1 )2 M − 1  with 

4 We omit, for notational simplicity, to indicate explicitly the integer parts 
⌊
a2 M

⌋
, . . .

⌊
(a+ 1 )2 M − 1

⌋
; we will 

often do this below without repeating this warning.

F D Cunden et alJ. Phys. A: Math. Theor. 52 (2019) 165202



6

N = ((a+ 1)2 − a2)M = (2a+ 1)M . Thus this excited state (or ‘block’ as shown by the 
rectangle in figure 1) is parametrised by a, with a  =  0 corresponding to the ground state. The 
fermions in this block J forms a determinantal process with kernel

KJ(x, y) =
(a+ 1 )2 M−1∑

k= a2 M

ψk(x)ψk(y). (18)

Note that this particular way of parametrising the block J (with the starting level 
k = a2 M = a2N/(2a+ 1)) turns out to be useful to express the scaled kernel in a nice and 
simple way, as is shown later.

We remark that KJ can be written as a (signed) sum of two blocks:

KJ(x, y) =
∑

k∈[0 . . (a+ 1 )2 M)

ψk(x)ψk(y)−
∑

k∈[0 . . a2 M)

ψk(x)ψk(y). (19)

This simple observation allows to apply the Christoffel–Darboux formula to both blocks sepa-
rately, and will be crucial for the following asymptotic analysis.

3.2.1. One-point function. From (19) we can understand easily that the large-M asymptotics 
of the one-point function (normalised to the number of particles N = (2a+ 1)M) is

ϱ1 (x) = KJ(x, x) M→∞∼ 1
2 π

(√
(4 (a+ 1 )2 M − x2 )+ −

√
(4 a2 M − x2 )+

)
.

 (20)
For a  =  0, so that N  =  M, this reduces to the Wigner semicircular law between −2

√
M and 

2
√

M . In general, the one-point function is concentrated between the edges ±2(a+ 1)
√

M. 
Note that limM→∞ ϱ1(0) = 1/π. The density for a few values of a  >  0 is plotted in figure 2.

For large a the one-point function approaches the arcsine law

ϱ1 (x)
a→∞∼ 1

π

(2 a+ 1 )M√
4 a2 M − x2

1 |x|<2 a
√

M , (21)

which is normalized to 
∫
ϱ1(x) dx = (2a+ 1)M = N  over its support x ∈

[
−2a

√
M, 2a

√
M
]
. 

The name ‘arcsine’ comes from the fact that the cumulative number density has the form

Figure 1. An excited state J =
[
a2M . . (a+ 1)2M

)
 consisting of N = ((a+ 1)2−

a2)M = (2a+ 1)M consecutive energy levels (k + 1/2) of the harmonic oscillator, 
starting with k = a2 M  and ending with k  =  (a  +  1)2M  −  1. The rectangle denoting 
the block J is parametrised by a, with a  =  0 corresponding to the ground state of N 
fermions (when J = [0 . . N)). By increasing a, one can slide the block and consider a 
family of such J’s labelled by the single parameter a.

F D Cunden et alJ. Phys. A: Math. Theor. 52 (2019) 165202



7

∫ x

−∞
ϱ1 (x′) d x′ ∼ (2 a+ 1 )M

π

[
π

2
+ arcsin

(
x

2 a
√

M

)]
. (22)

A semiclassical explanation for this arcsine law is as follows. The quantum state of a par-
ticle can be represented in the phase space by a quasi-probability density known as Wigner 
function (see [14]). The Wigner function WJ(x,p ) associated with the many-body state 
ΨJ(x1 , x2 , . . . , xN) is

WJ(x, p) =
N
2 π

∫

RN
Ψ∗

J

(
x +

y
2

, x2 , . . . , xN

)
ΨJ

(
x +

y
2

, x2 , . . . , xN

)
eipyd yd x2 d x3 . . . d xN . (23)

For large N, the Wigner function WJ(x,p ) in the phase space is constant in the classically allowed 
region and zero in the classically forbidden region. The classically allowed region of the phase 
space is the set of momenta p  and positions x such that the energy E(x, p) = p2 + x2 /4  is 
between the lowest occupied energy level Emin = a2M + 1/2 and the largest occupied level 
Emax = (a+ 1)2M − 1/2.

Neglecting o(M) terms the region Emin ! E(x, p) ! Emax  is the annulus

a2 M ! p2 +
x2

4
! (a+ 1 )2 M. (24)

Therefore, for large |J|, the Wigner function (normalised to the total number of particles) is 
proportional to the indicator function [1, 2, 8]

WJ(x, p)d xd pM→∞∼ 1
π a2 M<p2 + x2

4 <(a+ 1 )2 M d xd p. (25)

The projection of the Wigner function on the x-axis gives the average number density: 
ϱ1 (x) =

∫
WJ(x, p)d p. When a  =  0, WJ(x, p ) is uniform in the ellipse p2 + x2

4 ! M (a disk if 

Figure 2. Comparison of the one-point functions and the M → ∞ asymptotics (20). As 
a increases the density of states approaches the arcsine law (21).

F D Cunden et alJ. Phys. A: Math. Theor. 52 (2019) 165202
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we rescale the axes). The projection of the uniform distribution on the disk is the semicircular 
law. For a  >  1, WJ(x, p ) is uniform in the annulus of radii a

√
M  and (a+ 1)

√
M, thus explain-

ing the plots in figure 2. For large a, the Wigner function WJ(x, p ) concentrates on the circle 
of radius a

√
M , and the projection of the uniform distribution on the circle is the arcsine law. 

We will elaborate more on this key remark in the last section of the paper.

3.2.2. Scaling limits. The scaling limit in the bulk is

lim
M→∞

1
ϱ1 (0 )

KJ

(
x

ϱ1 (0 )
,

y
ϱ1 (0 )

)
= k(x − y), (26)

with

k(x − y) =
1

π(x − y)
sin (π(a + 1 )(x − y))− 1

π(x − y)
sin (πa(x − y)) .

 (27)

Using the trigonometric identity sin x − sin y = 2 sin x−y
2 cos x+y

2 , the above formula can be 
rearranged as

k(x − y) =
sin π

2 (x − y)
π
2 (x − y)

cosω(x − y) (28)

where we set ω = π (a + 1/2). For a  =  0 this is, of course, the sine kernel.
We will now show that, as a → ∞, the process becomes α-determinantal with correlation 

kernel sin π
2 (x − y)/(π2 (x − y)) and α = −1/2.

First, we remark that for large a, the frequency ω  of the cosine factor increases and k(x − y) 
becomes rapidly oscillating. To get some insight, it is useful to write down explicitly the cor-
relation functions

ϱ̃n(x1 , . . . , xn) = lim
M→∞

1
ϱ1 (0 )n ϱn

(
x1

ϱ1 (0 )
, . . . ,

xn

ϱ1 (0 )

)
= det

1 !i,j!n
k(xi − xj)

 (29)
for the first values of n. For all a ! 0 the one-point function is, of course, constant

ϱ̃1(x) = 1. (30)

The two-point correlation function is

ϱ̃2 (x1, x2 ) = 1 −
(
sin π

2 x12
π
2 x12

)2

cos2 ωx12 . (31)

See figure 3 for a plot. For large ω , the factor cos2 ωx12 = (1 + cosωx12) /2 rapidly oscillates 
around the mean value 1/2, so

lim
ω→∞

ϱ̃2 (x1, x2 ) = 1 − 1
2

(
sin π

2 x12
π
2 x12

)2

, (32)

where this limit is to be understood in the weak sense of integration over compact sets. In the 
following, all limits of correlation functions are to be understood in this sense.

F D Cunden et alJ. Phys. A: Math. Theor. 52 (2019) 165202
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The correlation function for three particles is

ϱ̃3(x1, x2, x3) = 1 + 2
sin π

2 x12
π
2 x12

sin π
2 x23

π
2 x23

sin π
2 x31

π
2 x31

cosωx12 cosωx23 cosωx31

−
(
sin π

2 x12
π
2 x12

)2

cos2 ωx12 −
(
sin π

2 x23
π
2 x23

)2

cos2 ωx23 −
(
sin π

2 x31
π
2 x31

)2

cos2 ωx31.

 (33)
Again, the squared cosines oscillate around their mean value 1/2. The product of three cosines 
can be expanded as
cosωx12 cosωx23 cosωx31

= cos2 ωx1 cos
2 ωx2 cos

2 ωx3 + sin2 ωx1 sin
2 ωx2 sin

2 ωx3 + zero mean terms,
 

(34)

and thus oscillates around the value 1/8  +  1/8  =  1/4. Therefore

lim
ω→∞

ϱ̃3(x1, x2, x3) = 1 − 1
2

(
sin π

2 x12
π
2 x12

)2

− 1
2

(
sin π

2 x23
π
2 x23

)2

− 1
2

(
sin π

2 x31
π
2 x31

)2

+
1
2
sin π

2 x12
π
2 x12

sin π
2 x23

π
2 x23

sin π
2 x31

π
2 x31

,

 

(35)

again in a weak sense. This pattern can be generalised for generic n as follows. The n-point 
correlation function is given by the determinantal formula

Figure 3. Scaling limit of two-point correlation functions ϱ1 (0 )−1 ϱ2 (ϱ1 (0 )−1 x,  
ϱ1(0)−1y), as a function of |x − y|, for several values of a (dots). Here M  =  20. The solid 
lines are the limits given in equation (32).

F D Cunden et alJ. Phys. A: Math. Theor. 52 (2019) 165202
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ϱ̃n(x1 , . . . , xn) = det
1 !i,j!n

k(xi − xj) =
∑

σ∈Sn

(−1 )n−m(σ)
n∏

i= 1

k(xσ(i) − xi)

=
∑

σ∈Sn

(−1 )n−m(σ)
n∏

i= 1

sin π
2 (xi − xσ(i))

π
2 (xi − xσ(i))

n∏

i= 1

cosω(xσ(i) − xi)

 (36)
(m(σ) denotes the number of cycles in σ ∈ Sn). For large a, the product of cosines becomes

lim
ω→∞

n∏

i= 1

cosω(xσ(i) − xi) =

(
1
2

)n−m(σ)

. (37)

We remind the reader that this limit is in the weak sense of integration over compact subsets 
of Rn or equivalently, integration against bounded measurable functions on Rn with compact 
support. For the proof, one can use the addition formulae of the trigonometric functions or, 
alternatively, observe that, as ω → ∞,

∫ 1

0
cosω(x − x)dx = 1 (38)

∫ 1

0

∫ 1

0
cos2 ω(x − y)d xd y =

1
2

(
1 +

sin2 ω

ω2

)
=

1
2
+ o(1 ), (39)

∫ 1

0
cosω(x − z) cosω(z − y)d z =

1
2
cosω(x − y) + o(1 ). (40)

Hence, for a given permutation σ ∈ Sn, we see that a cycle of length mi contributes to the 
product with a factor (1/2)mi−1. For example, each fixed point gives a factor 1, each transposi-
tion gives a factor 1/2, a 3-cycle gives 1/4, and so on. If the m(σ) cycles of σ have lengths mi, 
i = 1, . . . , m(σ),

n∏

i= 1

cosω(xσ(i) − xi) =

(
1
2
+ o(1 )

)m1 −1 ( 1
2
+ o(1 )

)m2 −1

· · ·
(

1
2
+ o(1 )

)mm(σ)−1

=

(
1
2

)∑m(σ)
i=1 (mi−1 )

+ o(1 ) =
(

1
2

)n−m(σ)

+ o(1 ).

 (41)

Therefore, as a → ∞,

ϱ̃n(x1 , . . . , xn) =
∑

σ∈Sn

(−1 )n−m(σ)
n∏

i= 1

sin π
2 (xi − xσ(i))

π
2 (xi − xσ(i))

n∏

i= 1

cosω(xσ(i) − xi)

a→∞→
∑

σ∈Sn

(
− 1

2

)n−m(σ) n∏

i= 1

sin π
2 (xi − xσ(i))

π
2 (xi − xσ(i))

 

(42)

in the sense that

lim
a→∞

∫
det

1 !i,j!n
k(xi − xj) f (x1 , . . . , xn)dx1 · · · dxn

=

∫
det−1 /2
1 !i,j!n

sin π
2 (xi − xj)

π
2 (xi − xj)

f (x1 , . . . , xn)dx1 · · · dxn ,
 (43)
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for any f (x1 , . . . , xn ) bounded, measurable function with compact support. This implies conv-
ergence of gap probabilities and number density (integrated over compact sets) hence, by 
Kallenberg’s criteria [28, theorem 4.5][29, theorem 3.3], weak convergence of the associated 
point processes. In particular, as a → ∞, the process converges weakly to the union of two inde-
pendent rescaled sine processes with kernel sin π

2 (x − y)/(π2 (x − y)). Note that this is not the 
standard sine kernel in the bulk of the ground state (a  =  0) which is sin(π(x − y))/(π(x − y)).

3.3. Local statistics at the cusps and the edges

It is clear that the previous analysis holds for any fixed point x0 ∈ R, where we have

lim
M→∞

ϱ1 (x0 )
−1 KJ

(
x0 + ϱ1 (x0 )

−1 x, x0 + ϱ1 (x0 )
−1 y

)
=

sin π
2 (x − y)

π
2 (x − y)

cosω(x − y),

 (44)
with ω = π

2 (2a + 1). A look at figure 2 suggests that, for large N, the local correlations of the 
block projection process depend on the ‘region’ where we take the scaling limit. There are two 
points in the support of the density that look special: the cusps at ±2a

√
M and the edges ±

2(a+ 1)
√

M. For example, it is clear that the local statistics at the edges cannot be described 
by a translation invariant kernel of the type (44). We can examine the scaling limits at points 
x0 = 2b

√
M not in the bulk. We report here the results (they follow from the know asymptot-

ics (16) and (17) of the GUE process and the block structure of KJ(x, y )):

 (i)  (Before the cusp) Set x0 = 2b
√

M with 0 ! b ! a:

lim
M→∞

ϱ1 (x0 )
−1 KJ

(
x0 + ϱ1 (x0 )

−1 x, x0 + ϱ1 (x0 )
−1 y

)
=

sin π
2 (x − y)

π
2 (x − y)

cosω(x − y),

 (45)

  with

ω =
π

2

√
(a + 1 )2 − b2 +

√
a2 − b2

√
(a + 1 )2 − b2 −

√
a2 − b2

. (46)

  At the cusp, i.e. b  =  a, this is the sine kernel; 
 (ii)  (After the cusp, before the edge) At x0 = 2b

√
M with a ! b < (a + 1):

lim
M→∞

ϱ1 (x0 )
−1 KJ

(
x0 + ϱ1 (x0 )

−1 x, x0 + ϱ1 (x0 )
−1 y

)
=

sinπ(x − y)
π(x − y)

; (47)

 (iii)  (At the edge) At x0 = 2(a+ 1)
√

M , we take the ‘edge scaling’ N1/6:

lim
M→∞

1
N 1 /6 KJ

(
x0 +

x
N 1 /6 , x0 +

y
N 1 /6

)
=

Ai(ηx)Ai′(ηy)− Ai′(ηx)Ai(ηy)
x − y

,

 (48)

  with η = (a+ 1)1/3

(2a+ 1)1/6. This is just a rescaling of the Airy kernel.

We remark that, when a  >  0, between the cusps (i) the limit kernel depends explicitly on 
the bulk point 2b

√
M (as evident from (45)). This is very different from the ‘quantum bulk’ 

(ii) where the scaling limit the kernel is always the sine kernel (47) (as long as we are not 
at the edges). In this sense, for a  >  0 there is a ‘classical bulk’ regime which is absent in 
the ground state a  =  0. When b → a from below, the limit kernel freezes to the sine kernel 

F D Cunden et alJ. Phys. A: Math. Theor. 52 (2019) 165202



12

and no longer depends on b. It is worth noticing that this transition from (45) to (47) across 
the cusp x0 = 2a

√
M is continuous. We can also discuss the question of the matching in 

the limit of large a. When a → ∞, if b2 = a2 − 2τa with τ ! 0, then ω → cπ/2 , where 
c = (1 +

√
τ/(1 + τ))/(1 −

√
τ/(1 + τ)). If τ = 0 (i.e. b  =  a) this gives the sine kernel; 

τ → ∞ gives ω → ∞ and we have the  −1/2-determinantal process discussed in the previous 
section.

So there is a family of kernels in between with a fixed π/2 < ω < ∞, which are seen just 
inside the cusp when a → ∞; they are the same as if one is looking inside the bulk, between 
the cusps, and keeping a fixed.

4. Block projection processes

Let us summarise the limit theorems of the previous two sections in a slightly generalised set-
ting. Consider the determinantal process with kernel (block projection)

KJ(x, y) =
∑

k∈J

ψk(x)ψk(y). (49)

Suppose that the set of energy levels is J =
[
a2M . . (a+ r)2M

)
, with r positive integer. There 

are two cases for the rescaled processes in the bulk:

 •  If a  =  0, then

lim
M→∞

ϱ1 (0 )−n det
1 !i,j!n

KJ(ϱ1 (0 )−1 xi, ϱ1 (0 )−1 xj) = det−1
1 !i,j!n

sinπ(xi − xj)

π(xi − xj)
; (50)

 •  If a  >  0, then

lim
a→∞

lim
M→∞

ϱ1 (0 )−n det
1 !i,j!n

KJ(ϱ1 (0 )−1 xi, ϱ1 (0 )−1 xj) = det− 1
2

1 !i,j!n

sin π
2 (xi − xj)

π
2 (xi − xj)

 (51)
In this section we set to ourselves to find a suitable limit procedure to obtain α-determinantal 
processes out of KJ(x, y ) with α = − 1

m, with m generic positive integer.
From the previous analysis we understand that a key ingredient to obtain non-trivial scaling 

limits is the possibility to rearrange KJ(x, y ) as a sum of Christoffel–Darboux kernels. Let us 
consider a subset J of energy levels with a block structure (the union of B blocks)

J =
B−1⋃

j=0

[
a2

j M . . (aj + rj)
2M

)
. (52)

Hereafter, we assume that the aj ’s and rj ’s are such that J is a union of B disjoint blocks. The 
number of energy levels N = |J| is

N =
B−1∑

j=0

(aj + rj)
2 − a2

j . (53)

Denote by ΨJ  the wave function representing N fermions with one fermion in each level 
k ∈ J . In formulae,

ΨJ(x1 , · · · , xN) =
1√
N!

det
1 !i,j!N

ψki(xj), with ki ∈ J. (54)
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Then,

|ΨJ(x1 , · · · , xN)|2 =
1

N!
det

1 !i,j!N
KJ(xi, xj) (55)

defines a determinantal point process on the line with kernel KJ(x, y ).
When M is large (a limit of large number of particles) the one-point function is

ϱ1 (x)
M→∞∼ 1

2 π

B−1∑

j=0

(√
(4 (aj + rj)2 M − x2 )+ −

√
(4 a2

j M − x2 )+

)
. (56)

In the bulk, e.g. at x  =  0,

lim
M→∞

1√
M
ϱ1 (0 ) =

R
π

, with R =
B−1∑

j=0

rj. (57)

It is not difficult to verify that the previous semiclassical considerations for the one-point 
function based on the correspondence principle (see equation (25)) carry over in the case of 
several blocks. For B  >  1, when M → ∞ the Wigner function in the phase space is uniform 
on B nested annuli; the projection onto the real line of the uniform density on nested annuli 
gives the number density (56). See figure 7.

The scaling limit of the kernel in the bulk is

lim
M→∞

1
ϱ1 (0 )

KJ

(
x

ϱ1 (0 )
,

y
ϱ1 (0 )

)
= k(x − y), (58)

with

k(x − y) =
B−1∑

j= 0

sin
(

πrj(x−y)
2 R

)

πrj(x−y)
2 R

rj

R
cos

π(2 aj + rj)(x − y)
2 R

. (59)

There are two special block structures that give rise to α-determinantal processes, α = − 1
m 

with m even or odd.

4.1. J of even type and − 1
2B-determinantal processes

Suppose that 0 < a0 < a1 < · · · < aB−1, and choose r0 = r1 = · · · = rB−1 = r, so that 
R  =  rB. See top panel of figure 4. In formulae.

J =
[
a2

0M . . (a0 + r)2M
)
∪
[
a2

1M . . (a1 + r)2M
)
∪ · · · ∪

[
a2

B−1M . . (aB−1 + r)2M
)

. (60)

We say, for shortness, that J is of even type. Then,

k(x − y) =
sin

(
π(x−y)

2 B

)

π(x−y)
2 B

· 1
B

B−1∑

j= 0

cosωj(x − y), where ωj =
π (2 aj + r)

2 rB
.

 (61)
If a0 , . . . , aB−1  are sent (independently) to infinity, then for any σ ∈ Sn,

lim
a0 ,...,aB−1 →∞

n∏

i= 1

1
B

B−1∑

j= 0

cosωj(xσ(i) − xi) =

(
1

2 B

)n−m(σ)

. (62)

To see this, we expand the sum to get
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n∏

i= 1

1
B

B−1∑

j= 0

cosωj(xσ(i) − xi) =
1

Bn

B−1∑

j1 ,...,jn= 0

cosωj1 (xσ(1 ) − x1 ) · · · cosωjn(xσ(n) − xn)

=
1

BnBm(σ)

(
1
2

)m1 −1

· · ·
(

1
2

)mm(σ)−1

+ o(1 ),

 

(63)

where the factor Bm(σ) is the number of ways of assigning frequencies ωj , j = 0, . . . , B − 1  to 
the m(σ) cycles of σ. We conclude that, if J is of even type, then

lim
a0 ,...,aB−1 →∞ lim

M→∞
det

1 !i,j!n

1
ϱ1 (0 )n det

1 !i,j!n
KJ

(
xi

ϱ1 (0 )
,

xj

ϱ1 (0 )

)
= det− 1

2 B
1 !i,j!n

sin π
2 B (xi − xj)

π
2 B (xi − xj)

. (64)

4.2. J of odd type and − 1
2B−1-determinantal processes

Suppose now that 0 = a0 < a1 < · · · < aB−1, and choose 2r0 = r1 = · · · = rB−1 = r, i.e.

J =
[
0 . . (r/2)2M

)
∪
[
a2

1M . . (a1 + r)2M
)
∪ · · · ∪

[
a2

B−1M . . (aB−1 + r)2M
)

 (65)
so that R = r(B − 1/2). We say that J is of odd type. See bottom panel of figure 4. Then,

k(x − y) =
sin

(
π(x−y)
2 B−1

)

π(x−y)
2 B−1

· 1
B − 1

2

⎛

⎝ 1
2
+

B−1∑

j= 1

cosωj(x − y)

⎞

⎠, where ωj =
π (2 aj + r)
2 r(B − 1

2 )
. (66)

One can check that, in the limit of large a1 , . . . , aB−1 , for any σ ∈ Sn,

lim
a1 ,...,aB−1 →∞

n∏

i= 1

1
B − 1

2

⎛

⎝1
2
+

B−1∑

j= 1

cos
(
ωj(xσ(i) − xi)

)
⎞

⎠ =

(
1

2 B − 1

)n−m(σ)

.

 (67)
The conclusion is that, if J has B blocks and is of odd type, then

Figure 4. Scheme of the even type (top) and odd type (bottom) of subsets J’s .
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lim
a1 ...,aB−1 →∞ lim

M→∞
det

1 !i,j!n

1
ϱ1 (0 )n det

1 !i,j!n
KJ

(
xi

ϱ1 (0 )
,

xj

ϱ1 (0 )

)
= det− 1

2 B−1
1 !i,j!n

sin π
2 B−1 (xi − xj)
π

2 B−1 (xi − xj)
. (68)

5. Summary and remarks

We can summarise the findings of the previous sections as follows.

Theorem. Let KJ(x, y ) be a kernel where J has B blocks as above. Consider the block  
projection process with correlation kernel ϱ1 (0 )−1 KJ

(
ϱ1 (0 )−1 x, ϱ1 (0 )−1 y

)
. Then, in the  

limit M → ∞ (first) and ai → ∞, the process converges to the α-determinantal process 

with kernel sinπα(x−y)
πα(x−y)  (the union of −1/α rescaled sine processes). The parameter α < 0 

is α = − 1
2B or α = − 1

2B−1  depending on whether J is of even or odd type, respectively. The 
convergence is in the sense of weak convergence of point processes.

Note that the correlation functions ϱn (x1 , . . . , xn ) = detα
1 !i,j!n

sinπα(x−y)
πα(x−y)

 are bounded

ϱn(x1, . . . , xn) ! 1, (69)

and hence determine uniquely the point process [26]. This limit process is translation invari-
ant, and standard quantities of interest in the theory of point processes can be investigated.

5.1. Pair statistics and number variance

The pair statistics in Fourier space is traditionally studied by looking at properties of the struc-
ture factor defined (for a process with unit density) as [40, 44]

S(k) = 1 + ĥ(k), (70)

where ĥ(k) is the Fourier transform of the total or connected correlation function

h(r) = ϱ2 (x1, x2 )− 1, r = x1 − x2 . (71)

For the process with correlation functions detα
1 !i,j!n

sinπα(x−y)
πα(x−y)

 it is easy to calculate

S(k) =

{
|k|

2 π|α| if|k| ! 2 π|α|
1 if |k| > 2 π|α|

. (72)

We remark that, as the number of blocks B increases, we obtain a Poisson process, as 

expected (superposition of a large number of independent spectra [3]). Indeed, when B → ∞, 

α→ 0 and sinπα(x−y)
πα(x−y) → 1 for all x and y . Consequently, ϱ2 (x, y) → 1  and hence h(r) → 0, 

leading to S(k) = 1 (the structure factor of a Poisson process).
As already discussed, the convergence of the correlation functions when ai → ∞ is not 

pointwise. This is quite clear, as the cosine factors in k(x − y) oscillates with high frequency. 
See figure 5. To illustrate better this point we consider the number variance, i.e. the variance 
of the number of fermions in a box [−L/2, L/2] in the bulk when the quantum state of the 
fermions is ΨJ(x1 , . . . , xN). The expected number of particles is

E
(
#

[
−L

2
,

L
2

])
=

∫ L/2

−L/2
KJ(x, x)d x. (73)
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In the scaling limit in the bulk, the process becomes translation invariant and

lim
M→∞

E
(
#

[
− L

2 ϱ1 (0 )
,

L
2 ϱ1 (0 )

])
= L. (74)

Standard manipulations give a formula for the variance in terms of the kernel KJ(x, y ):

Var
(
#

[
−L

2
,

L
2

])
=

∫ L/2

−L/2
KJ(x, x)d x −

∫∫ L/2

−L/2
KJ(x, y)2 d xd y. (75)

Taking the limit M → ∞,

lim
M→∞

Var
(
#

[
− L

2 ϱ1 (0 )
,

L
2 ϱ1 (0 )

])
= L −

∫∫ L/2

−L/2
k(x − y)2 d xd y, (76)

and, for large ai’s, the weak convergence of the process implies

lim
ai→∞

lim
M→∞

Var
(
#

[
− L

2 ϱ1 (0 )
,

L
2 ϱ1 (0 )

])
= L + α

∫∫ L/2

−L/2

(
sinαπ(x − y)
απ(x − y)

)2

d xd y (77)

where α = − 1
2B or α = − 1

2B−1 , if J is of even or odd type, respectively. For an illustration of 
this convergence, see figure 6.

In particular, in the limit M → ∞ and ai → ∞, the number variance has the asymptotic 
expansions

Var
(
#

[
− L

2 ϱ1(0 )
,

L
2 ϱ1(0 )

])
∼

⎧
⎨

⎩

L + αL2 − 1
18 π

2 α3 L4 + 2
675 π

4 α5 L6 + · · · as L → 0

− 1
απ2 (log L + log(−2 πα) + 1 + γE + · · · ) as L → ∞

,

 (78)
where γE = 0.577 215 . . . is the Euler–Mascheroni constant. For α = −1, the second line 
reduces to the well-known Dyson–Mehta result for the GUE [35].

5.2. Heuristic discussion and extension to other models

At this stage one may ask for a semiclassical explanation of the convergence of the fer-
mion processes to α-determinantal processes. It is known that fermions generically display 
‘Friedel oscillations’ [17–19] in the particle density and correlation functions with a wave 

Figure 5. Comparison of the two-point correlation function of a block projection 
process and its limit. Here B  =  1, and the limit process is α-determinantal with 
α = −1/2.
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vector determined by a combination of Fermi surface effects and many-body effects. In the 
one-dimensional setting of non-interacting particles considered in this paper, the oscillations 
described by the sine kernel are simply a consequence of the sharpness of the Fermi surface 
(here points) at zero temperature. In the ground state, the momenta are in the Fermi sphere 
(interval) with edges ±

√
N , and in the bulk the correlation kernel is the Fourier transform of 

the indicator function of that interval, hence the sine kernel with frequency (1/2)
√

N .
For B  >  1 blocks, the Fermi sphere, i.e. the set of momenta p ∈ R for the wavefunction 

ΨJ , is rather the union of Fermi shells (disjoint intervals). Oscillations occur in the correla-
tion functions in the bulk, and their frequencies is related to the size of the Fermi shells. More 
precisely, if J is of even type, the set of possible momenta consists of 2B shells symmetric 
with respect to p   =  0. If J is of odd type, there are 2B  −  1 intervals (one containing the origin) 
of possible values for the momenta. In both cases, when M → ∞ each interval has the same 
length  ∼r

√
M . This also explains why in the odd type we choose r0  =  r/2. In the scaling limit 

in the bulk, to each Fermi shell corresponds a correlation kernel with frequency given by 
(1/2)× r

√
M ; for large ai’s, the distance between the Fermi shells increases, and the oscil-

lations of the kernels are asymptotically independent so that the process in the bulk becomes 
a superposition of independent sine processes with the same frequency. A glance at figure 7 
may be helpful.

In fact, the reader may have recognised in the computation of the kernel k(x − y) steps sim-
ilar to the calculation of diffraction/interference patterns in wave optics [42]. For a single slit 
of width r (ground state a  =  0) the far-field intensity distribution is proportional to ( sinπrz

πrz )2. 
For two slits of width r at distance a (J of even type with one block) the interference pattern 
shows periodic fringes superimposed to the diffraction pattern ( sinπrz

πrz )2 cos2(πa) However, if 
the slits are too far apart (i.e. when a → ∞), the waves coming from the two slits do not inter-
fere, no fringes will be seen and the intensity distribution will be just the incoherent sum of the 
diffraction patterns from each individual slit. This easily extends to a generic number of slits.

These semiclassical considerations are also relevant in other block projection processes 
with correlation kernel

Figure 6. Number variance. The symbols comes from numerical integrations of (76) 
while the lines are the corresponding limits (77). Even for moderate values of the a’s 
the agreement is fairly good.
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KJ(x, y) =
∑

k∈J

ψk(x)ψk(y), (79)

where ψk form an orthonormal basis of some L2 space. For instance, one can consider the 
free fermions on the circle, i.e. block projection processes constructed using the family of 
trigonometric polynomials ψk(x) = eikx, k ∈ Z. (These processes appeared under the name of 
‘Fermi shell models’ in a work by Torquato, Scardicchio and Zachary [44].) It is easy to see 
that the scaling limit in the bulk, in the limit of blocks very far apart the is a superposition of 
independent sine processes.

As an alternative heuristics, one can imagine the Hermite block projection process as 
a complex Hermite block projection process conditioned to be real [25]. This gives a nice 
heuristic explanation as to why we see a superposition of independent sine processes in the 
limit when we are inside the inner radius of the annulus, coming from above and below (and 
becoming independent when a → ∞). Similarly, in the circular case one should consider the 
block Ginibre process constructed using monomials zk, k ∈ Z; then, constrained to the unit 
circle this is the block trigonometric process, and we see asymptotic superposition of sine 
processes as expected.

5.3. Another α-determinantal process from random matrices of finite size

The α-determinantal processes described in this paper arise as scaling limits of block projec-
tion processes. In particular, the limit processes describe configurations of an infinite number 
of particles (superposition of sine kernels). It is natural to ask whether it is possible to get (in 
a non-trivial way) α-determinantal processes out of eigenvalues of random matrices of finite 
size. In fact, one example of such a construction can be read off from an intriguing decoupling 
phenomenon for power of random unitary matrices discovered by Rains [38, 39]. Let m and 
N be a positive integers with m ! N , and let U be a random unitary matrix from the Haar 

Figure 7. Scheme of the semiclassical considerations based on the correspondence 
principle. For large M, the Wigner function is uniform on a set of nested annuli. The 
projection onto the x-axis is the limit number density. The intersections of the annuli 
with the p -axis define the Fermi shells. The Fourier transform of the Fermi shells gives 
a sum of sine processes that become independent when the shells are far apart. A close 
analogy can be drawn with the diffraction patterns in wave optics.
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measure on U(mN). Then, the eigenvalues of Um are exactly distributed as the union of eigen-
values of m independent unitary matrices U1 , . . . , Um chosen in U(N).

It is a classical fact that the eigenvalues of random unitary matrices form a determinantal 

process on the unit circle. Set Sn(z) = 1
2π

sin(nz/2)
sin(z/2) , and denote by x1 , . . . , xmN  the eigenphases 

of a random unitary U of size mN. Then, the law of x1 , . . . , xmN  defines a determinantal pro-
cess with kernel SmN(x  −  y ). Rains’ theorem can be restated by saying that the point con-
figuration of mth powers xm

1 , . . . , xm
mN  is the union of m independent determinantal processes 

with kernel SN(x  −  y ). Alternatively—and this is perhaps not so well-known—the mth powers 
xm

1 , . . . , xm
mN  form an α-determinantal process with α = − 1

m and kernel SmN(x  −  y ).
Similar results hold for the eigenvalue processes of the other classical compact groups [39], 

and have been recently extended to a class of rotation invariant determinantal processes in the 
complex plane by Dubach [10]. It remains an open problem to generalise this construction to 
other matrix ensembles without rotation symmetry.
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