
Information Processing Letters 107 (2008) 60–63

www.elsevier.com/locate/ipl

Complexity analysis of a decentralised graph colouring algorithm

K.R. Duffy a,∗, N. O’Connell b, A. Sapozhnikov c

a Hamilton Institute, National University of Ireland, Maynooth, Ireland
b Mathematics Institute, University of Warwick, Coventry, CV4 7AL, UK

c Centrum voor Wiskunde en Informatica, Kruislaan 413, 1098SJ Amsterdam, The Netherlands

Received 10 September 2006; received in revised form 18 December 2007; accepted 8 January 2008

Available online 11 January 2008

Communicated by F. Meyer auf der Heide

Abstract

Colouring a graph with its chromatic number of colours is known to be NP-hard. Identifying an algorithm in which decisions
are made locally with no information about the graph’s global structure is particularly challenging. In this article we analyse the
complexity of a decentralised colouring algorithm that has recently been proposed for channel selection in wireless computer
networks.
© 2008 Elsevier B.V. All rights reserved.

Keywords: Computational complexity; Graph algorithms; Randomised algorithms
1. Introduction

Consider an undirected connected graph G with ver-
tices V = {1, . . . ,N}, where N � 2. For i �= j ∈ V let
i ↔ j denote the existence of an edge joining i and j .
A proper vertex colouring of a graph G using C colours
is a map f :V �→ {1, . . . ,C} such that f (i) �= f (j) if
i ↔ j . The smallest number C for which such an f ex-
ists is called the chromatic number of the graph G and
denoted χ or χ(G).

It is well known that properly colouring a graph with
χ colours is NP-hard for χ � 3 [4]. Restricting to cer-
tain classes of random graphs, polynomial time algo-
rithms exist that properly colour them with high proba-
bility as the number of vertices diverges, e.g., [5,10,2,1].
As in many practical applications graph structure is not

* Corresponding author.
E-mail address: ken.duffy@nuim.ie (K.R. Duffy).
0020-0190/$ – see front matter © 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.ipl.2008.01.002
well represented by a random graph, algorithms have
been proposed for colouring arbitrary graphs. For exam-
ple, Feder and Motwani [3] propose a randomised algo-
rithm with exponential running time and linear space.
They also provide a robust defence of the importance of
investigating exponential running time algorithms.

All of the algorithms mentioned above, and brute-
force searching, are centralised techniques, which are
appropriate for many traditional applications including
register allocation in compilers. That is, if we assume
that there is intelligence at each vertex, then in order
for this intelligence to run these algorithms it is neces-
sary that at least one vertex is in possession of complete
knowledge of the graph’s structure. To use a colouring
that has been found, this information must be shared
with the rest of the vertices and they must accept the
colour they are given. For practical purposes this means
message passing must gather graph data for a controller
that has been accepted to make the colouring decision.

K.R. Duffy et al. / Information Processing Letters 107 (2008) 60–63 61
Once a colouring is found, the controller must then
message pass the solution back to the other vertices.
Complexity of distributed graph colouring algorithms is
investigated in [8,6].

Clearly it is significantly more difficult to colour in a
decentralised fashion where no element in the graph has
knowledge of the graph’s structure and only limited in-
formation regarding its neighbours. Yet in certain appli-
cations centralised solutions are inapplicable and a de-
centralised algorithm must be used. For example, this is
the case of channel allocation in wireless computer net-
works that use the IEEE 802.11 standard, which are per-
vasive. Here the adjacency relation in the graph is deter-
mined by interference. Dependent on the physical layer,
there are a given number of non-overlapping radio fre-
quencies (colours in the interference graph): 802.11b/g
has 3 and 802.11a has 12. In a wireless network employ-
ing IEEE 802.11, a decentralised algorithm is necessary
as: (1) the distance to which interference extends is sig-
nificantly greater than the distance at which it is possi-
ble to decode messages, so that stations may interfere
without being able to communicate; (2) the elements of
the network may be owned by distinct entities (compa-
nies, individuals, etc.) that are unwilling to allow them
to communicate, even if they are within range or are
connected through a wired back-haul. A consequence
of this is that no part of the protocol allows one access
point to dictate the frequency selection of another ac-
cess point.

Leith and Clifford [7,9] have recently proposed a
fully decentralised stochastic colouring algorithm, in-
spired by frequency allocation within the constraints of
wireless networks employing the IEEE 802.11 standard.
They call it the Communication-Free Learning (CFL)
algorithm and have shown empirically that it has desir-
able properties. They also outline a proof that the algo-
rithm converges almost surely to a proper colouring, if
one exists. Inspection of their approach gives a upper
bound on the running time to achieve a high probabil-
ity of convergence that is of order exp(N2δ1), for some
δ1 > 0. In this article we further analyse the complexity
of the CFL algorithm. In particular, Corollary 5 proves
that an upper bound on the running time to achieve a
high probability of convergence that is exp(Nδ2), for a
given δ2 > 0.

2. The algorithm

The CFL algorithm is parameterised by β ∈ (0,1)

and works as follows. Time t ∈ {0,1, . . .} is discrete and
at each instant every node n ∈ 1, . . . ,N in the graph
selects its colour cn(t) according to its own probabil-
ity distribution pn(t) on the range of available colours
{1, . . . ,C}. At t = 0, each node’s colour distribution
is initialised to be the uniform distribution: pn(0) =
(1/C, . . . ,1/C) for all n ∈ {1, . . . ,N}. The distribu-
tions pn(t) then evolve for t � 1 according to the fol-
lowing rule

pn(t + 1) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

δcn(t)

if cn(t) �= ci(t)

for all neighbors i ↔ n,

(1 − β)pn(t) + β
C−1 δ̄cn(t)

if cn(t) = ci(t)

for any neighbor i ↔ n,

(1)

where δi denotes the distribution with unit mass on
i ∈ {1, . . . ,C} and δ̄i denotes the vector in R

C which
has component 0 at i and 1 at all other positions. Let
X(t) = (p1(t), . . . , pN(t)) ∈ [0,1]NC . By construction
the sequence {X(t), t ∈ {0,1, . . .}} forms a Markov
chain.

Note that the algorithm only assumes that if you se-
lect a colour that one of your neighbours has chosen,
you are aware of it. The effect of the update rule in
Eq. (1) is to cause a node to stick with a colour if none
of its neighbours have chosen the same colour. If one of
its neighbours chooses the same colour, it moves prob-
ability off the previously selected colour and distributes
it to all other colours. If β is small, there is a sticki-
ness, with nodes unlikely to leave a colour once it has
proved to be a local solution. If β is large, less resistance
is present to global changes, as the effects of collisions
(neighbours choosing the same colour) propagate with
greater likelihood.

3. Main results

We will say two vertices i ↔ j collide if they both
select the same colour. We define the absorbed state
A ⊂ [0,1]CN to be the collection of nodes’ probability
distributions corresponding to acceptable colourings:

A = {
(δc(1), . . . , δc(N)): where c(i) ∈ {1, . . . ,C}
for all i ∈ {1, . . . ,N} and c(i) �= c(j) if i ↔ j

}
.

Let |A| denote the cardinality of this set. We say that
the CFL algorithm has converged, or is in an absorb-
ing state, at time t if X(t) ∈ A. Once the Markov chain
{X(t)} enters a state in A, the probability it leaves its
current state is zero. Let τ denote the stopping time
τ = inf{t : X(t) ∈ A}. Theorem 3 below will show by
construction that there exists γ ∈ (0,1) such that, for
any t and any valid state 	x ∈ [0,1]NC , P(τ � t + N |
X(t) = 	x) � γ N .

62 K.R. Duffy et al. / Information Processing Letters 107 (2008) 60–63
We first prove the following lemma, whose motiva-
tion can be found by reading the statement of its corol-
lary, before moving on to the main theorem, Theorem 3.

Lemma 1. Define the collection of states

U = {
(p1, . . . , pN): for all i ∈ {1, . . . ,N} either

pi = δj for some j ∈ {1, . . . ,N} or

(pi)k � β(1 − β)/(C − 1) for all k ∈ {1, . . . ,C}}.
If C � χ , for any valid state 	x ∈ [0,1]NC at time t ,

P
(
X(t + 1) ∈ U | X(t) = 	x)

�
(

β

C − 1

)N

. (2)

Proof. If there does not exist i ↔ j such that ci(t) =
cj (t), then 	x ∈ A ⊂ U and X(t + 1) = 	x ∈ U . If there
exists one or more pairs i ↔ j such that ci(t) = cj (t),
then define the following set of vertices for each t ′ and
each c ∈ {1, . . . ,C}:
V (t ′, c) = {

i ∈ {1, . . . ,N}: ci(t
′) = cj (t

′) = c,

some j ↔ i
}
.

Thus the set of all colliding vertices at time t ′ is

C⋃
c=1

V (t ′, c).

Note that every v ∈ V (t ′, c) has (pv(t
′))k � β/(C − 1)

for all k �= c. Consider the probability of the following
event: for each c ∈ {1, . . . ,C}, every vertex in V (t, c)

selects the same c′ �= c. The probability this happens is
lower bounded by (β/(C − 1))N and then every

v ∈
C⋃

c=1

V (t + 1, c)

has (pv(t + 1))k � (1 − β)β/(C − 1) for every k ∈
{1, . . . ,C}. Thus the bound (2) follows. �

An immediate corollary to the proceeding lemma is
the following:

Corollary 2. For any initial state at time t , the probabil-
ity that at time t + 2 that all colliding vertices are doing
so on the same colour is lower bounded by

(1 − β)N
(

β

C − 1

)2N

. (3)

We are now in a position to prove the lower bound.
Theorem 3. If C � χ , for any valid state 	x ∈ [0,1]NC

at time t ,

P
(
τ � t + N | X(t) = 	x)
� |A|

(
(1 − β)2

(
β

C − 1

)2C+1)N

=: |A|γ N .

Proof. By Corollary 2, uniformly over the initial states,
a lower bound on the probability that in 2 time steps
all colliding vertices are colliding on the same colour is
given by (3). Thus we initially assume that all colliding
vertices at time t are colliding on the same colour.

We shall lower bound the probability the algorithm
follows a particular sequence of events that leads to a
correctly coloured graph. Starting with the vertices that
originally collided, we shall cycle them through their
neighbours’ colours, growing the set until it encom-
passes the whole graph. Once a vertex is sufficiently
deep within the set, its colour can be fixed on one cor-
responding to a proper colouring. We shall demonstrate
this can occur in N − 2 steps and lower bound its prob-
ability.

For a set V of vertices we define its outer-boundary,
∂V , by

∂V = {i ∈ G \ V : ∃j ∈ V such that i ↔ j}.
We define the nested sets {Gs : s � t} by the follow-
ing procedure. Let Gt be the set of colliding vertices at
time t . If ∂Gt �= ∅, let c = min{cv(t): v ∈ ∂Gt } and de-
fine

Gt+1 = Gt ∪ {
v ∈ ∂Gt : cv(t) = c

}
.

If ∂Gt \ Gt+1 �= ∅, let c = min{cv(t): v ∈ ∂Gt \ Gt+1}
and define

Gt+2 = Gt+1 ∪ {
v ∈ ∂Gt \ Gt+1: cv(t) = c

}
.

We repeat this procedure until the first k such that
∂Gt \Gt+k = ∅, which, as there are C colours, takes no
more than C −1 steps. This is the first time at which the
boundary ∂Gt is absorbed by some Gt+k . If Gt+k = G,
the procedure stops and we set Gt+k+s = G for all
s � 0. Otherwise, let c = min{cv(t): v ∈ ∂Gt+1 \Gt+k}
and define

Gt+k+1 = Gt+k ∪ {
v ∈ ∂Gt+1 \ Gt+k: cv(t) = c

}
repeating the procedure as before to build the entire se-
quence {Gs, s � t}. Note that: (i) {Gs, s � t} is a only
a function of the graph G and configuration of colours
at time t ; and (ii) as we start with at least two nodes
colliding, the graph G is included in a Gt+k in at most
k = N − 2 steps, so that Gt+N−2 = G.

K.R. Duffy et al. / Information Processing Letters 107 (2008) 60–63 63
For s � t , if Gs = G we define the set G̃s to be G.
Otherwise G̃s is defined to be the maximal subset of ver-
tices of Gs such that the procedure described above for
constructing {Gs, s � t} when applied to graph G \ G̃s

with colliding vertices Gs \ G̃s and all other vertices
coloured according to the colouring of G \ Gs at time t

produces nested sets {Ĝk}k�s such that, for any k � s,

Ĝk = Gk \ G̃s .

Finally, we define the sequence {int(G̃s), s � t} by:
int(G̃s) ⊂ G̃s is the interior of G̃s if all neighbours of
vertices of elements of int(G̃s) are in G̃s . Note that if
v ∈ G̃s , then v ∈ int(G̃s+C−1).

The idea is that the sets {Gs, s � t} “grow” to en-
compass the whole graph, leaving a correctly coloured
graph in their wake. The sets {G̃s, s � t} are within
the interior of this growth and the elements of {int(G̃s),

s � t} are deep within the interior.
Each vertex v experiences no more than 2C−1 colli-

sions after t until it is in G̃s , for some s. The probability
that it selects the correct sequence of colours in that pe-
riod is bounded below by(

β

C − 1

)2C−1

.

It then selects its “correct” final colour and stays on it.
Should its final colour be the same as the colour that
it last collided on, the probability this happens is lower
bounded by β(1 − β)/(C − 1). Should its final colour
not be the same as the colour that it last collided on, this
happens with probability lower bounded by β/(C − 1),
but it may experience one more collision before becom-
ing part of the interior. Should this happen, the likeli-
hood of staying on the same colour after the collision
is (1 − β). Thus, regardless of what happens, the likeli-
hood that the vertex selects its correct colour and stays
on it is lower bounded by β(1 − β)/(C − 1).

As there N vertices and we start with at least two col-
liding, in N − 2 steps the probability we have a correct
colouring is lower bounded by(

β

C − 1

)2CN

(1 − β)N .

Including the lower bound given in Eq. (3), that from
any configuration we can get to the stage where all
colliding vertices are doing so on the same colour in
2 steps, gives the result. �
Corollary 4. The probability that the graph is not prop-
erly coloured by time m is bounded above by(
1 − |A|γ N

)�m/N�
.

Corollary 5. With high probability the algorithm colours
in exponential time. That is, for any given graph and
ε ∈ (0,1) the number of steps m for which the graph
must be run to ensure that a colouring is obtained with
likelihood 1 − ε is of order less than

N exp
(
N log(γ −1)

)
log(ε−1),

where N is the number of vertices of the graph.

We can find the tightest bound by identifying the β

that maximises γ (β): β∗ = (2C + 1)/(2C + 2) and

log
(
γ −1(β∗)

) = 2 log(2C + 2)

+ (2C + 1) log

(
(C − 1)(2C + 2)

2C + 1

)
.

This does not suggest the best β for the algorithm,
merely for our bound. Note that γ (β∗) grows as
C log(C), in comparison to bounds of log(C) for cen-
tralised algorithms such as in [3].

Acknowledgements

K.D. is supported by Science Foundation Ireland
grants 03-IN3-I396 and RFP-07-ENEF530. N. O’C. and
A.S. were with University College Cork, Ireland, sup-
ported by grant SFI-04-RP1-I512 when this work was
performed.

References

[1] N. Alon, N. Kahale, A spectral technique for coloring random
3-colorable graphs, SIAM J. Comput. 26 (6) (1997) 1733–1748.

[2] M.E. Dyer, A.M. Frieze, The solution of some random NP-hard
problems in polynomial expected time, J. Algorithms 10 (4)
(1989) 451–489.

[3] T. Feder, R. Motwani, Worst-case time bounds for coloring and
satisfiability problems, J. Algorithms 45 (2) (2002) 192–201.

[4] M.R. Garey, D.S. Johnson, Computers and Intractability, W.H.
Freeman and Co., San Francisco, CA, 1979.

[5] L. Kučera, Expected behavior of graph coloring algorithms, in:
Fundamentals of Computation Theory, Proc. Internat. Conf.,
Poznań–Kórnik, 1977, in: Lecture Notes in Comput. Sci.,
vol. 56, Springer, Berlin, 1977, pp. 447–451.

[6] F. Kuhn, R. Wattenhofer, On the complexity of distributed graph
coloring, in: Proc. of the 25th ACM PODC, 2006.

[7] D.J. Leith, P. Clifford, Convergence of distributed learning algo-
rithms for optimal wireless channel allocation, in: IEEE CDC,
2006, pp. 2980–2985.

[8] N. Linial, Locality in distributed graph algorithms, SIAM J.
Comput. 21 (1) (1992) 193–201.

[9] D. Malone, P. Clifford, D. Reid, D. Leith, Experimental imple-
mentation of optimal WLAN channel selection without commu-
nication, in: IEEE DySPAN, 2007, pp. 316–319.

[10] J.S. Turner, Almost all k-colorable graphs are easy to color, J. Al-
gorithms 9 (1) (1988) 63–82.

