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Let X k be a sequence of independent and identically distributed random variables taking values in a

compact metric space Ù, and consider the problem of estimating the law of X1 in a Bayesian

framework. A conjugate family of priors for nonparametric Bayesian inference is the Dirichlet process

priors popularized by Ferguson. We prove that if the prior distribution is Dirichlet, then the sequence

of posterior distributions satis®es a large-deviation principle, and give an explicit expression for the

rate function. As an application, we obtain an asymptotic formula for the predictive probability of ruin

in the classical gambler's ruin problem.
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1. Introduction

Let X be a Hausdorff topological space with Borel ó -algebra B , and let ìn be a sequence

of probability measures on (X , B ). A rate function is a non-negative lower semicontinuous

function on X . We say that the sequence ìn satis®es the large-deviation principle (LDP)

with rate function I , if for all B 2 B ,

ÿ inf
x2B�

I(x) < lim inf
n

1

n
log ìn(B) < lim sup

n

1

n
log ìn(B) < ÿinf

x2B

I(x):

Let Ù be a complete, separable metric space (Polish space) and denote by M1(Ù) the space

of probability measures on Ù. Consider a sequence of independent random variables X k

taking values in Ù, with common law ì 2M1(Ù). Denote by Ln the empirical measure

corresponding to the ®rst n observations:

Ln � 1

n

Xn

k�1

äXk
:

We denote the law of Ln by L (Ln). For í 2M1(Ù) de®ne its Kullback±Leibler distance or

relative entropy (relative to ì) by
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H(íjì) �

�
Ù

dí

dì
log

dí

dì
dì, í� ì,

1, otherwise:

8<:
The statement of Sanov's theorem is that the sequence L (Ln) satis®es the LDP in M1(Ù)

equipped with the ô-topology (see Dembo and Zeitouni 1993, Theorem 6.2.10), with rate

function H(:jì). As a corollary, the LDP also holds in the weak topology on M1(Ù), which

is weaker than the ô-topology.

In an earlier paper (Ganesh and O'Connell 1999), we proved an inverse of this result,

which arises naturally in a Bayesian setting, for ®nite sets Ù. The underlying distribution

(of the Xk) is unknown, and has a prior distribution ð 2M1(M1(Ù)). The posterior

distribution, given the ®rst n observations, is a function of the empirical measure Ln and is

denoted ðn(Ln). We showed that, on the set fLn ! ìg, for any ®xed ì in the support of the

prior, the sequence ðn(Ln) satis®es the LDP in M1(Ù) with rate function given by H(ìj:)
on the support of the prior (otherwise it is in®nite). Note that the roles played by the

arguments of the relative entropy function are interchanged compared to Sanov's theorem.

We pointed out that the extension of the result to more general Ù would require additional

assumptions about the prior. To see that this is a delicate issue, note that, since

H(ìjì) � 0, the LDP implies consistency of the posterior distribution in the topology

generated by Kullback±Leibler neighbourhoods; in particular, it implies weak consistency.

But it was shown by Freedman (1963) that Bayes estimates can be inconsistent even for

countable Ù; even if the true distribution is in the weak support of the prior, it does not

follow that the posterior mass of each weak neighbourhood tends to 1 (in fact, it can tend

to zero!).

There has recently been renewed interest in the consistency of nonparametric Bayes

methods, prompted by their increasing popularity in applied work. A notable early result in

this ®eld is due to Schwartz (1965), who showed that if the prior assigns positive

probability to every Kullback±Leibler neighbourhood of the true distribution, then the

posterior is weakly consistent. If, in addition, the relevant space of probability distributions

satis®es a `metric entropy' condition, then Barron et al. (1999) show that the posterior

concentrates on neighbourhoods de®ned by the Hellinger metric; these are ®ner than weak

neighbourhoods. (The Hellinger distance between two densities f and g with respect to a

reference measure ì is de®ned by
�

(
����
f
p ÿ ����

g
p

)2 dì.) Recent research on the consistency of

Bayes methods is reviewed by Ghosal et al. (1999) and Wasserman (1998). Rates of

convergence of the posterior have been investigated by Ghosal et al. (1998) and Shen and

Wasserman (1998), but there is relatively little work on more re®ned asymptotics.

In this paper, we prove an LDP for the special (but nevertheless useful) case of Dirichlet

process priors on a compact metric space. The problem of extending our results to an

arbitrary Polish space remains open.

An LDP with a similar ¯avour for a sequence of Dirichlet processes has been derived by

Lynch and Sethuraman (1987); we compare our result with theirs following the statement of

Theorem 1. The techniques we use in this paper are very different from those of Lynch and

Sethuraman, who obtain their results as a consequence of an LDP they derive for processes
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with stationary, independent increments. We believe that our methods are of independent

interest, and also that they can be generalized to a wider class of prior distributions.

The LDP for Dirichlet posteriors derived here has applications to queue and risk

management that are discussed in Ganesh et al. (1998). Some questions of interest in this

context are posed in terms of the ruin probability in the classical gambler's ruin problem. In

Section 3, we use the LDP for the posterior distributions to obtain an asymptotic formula

for the predictive probability of ruin.

2. The large-deviation principle

Let Ù be a compact metric space with Borel ó -algebra F . Let M1(Ù) denote the space of

probability measures on (Ù, F ), and B (M1(Ù)) the Borel ó -algebra induced by the weak

topology on M1(Ù). In this case, it is not possible to establish an LDP for Bayes posteriors

corresponding to arbitrary prior distributions, for reasons discussed above. Therefore, we

shall work with a speci®c family of priors, namely Dirichlet process priors; see Ferguson

(1973) for a detailed discussion of their properties.

The n-dimensional Dirichlet distribution with parameter a � (a1, . . . , an), denoted D(a),

is de®ned to be the joint distribution of (Z1=Z, . . . , Zn=Z), where Zi, i � 1, . . . , n, are

mutually independent, Zi has the gamma distribution with shape parameter ai and scale

parameter 1, and Z � Z1 � . . . � Zn.

Denote by M�(Ù) the space of ®nite non-negative measures on (Ù, F ). The Dirichlet

process with parameter á 2M�(Ù), denoted D (á), is a probability distribution on M1(Ù).

A random probability measure, ì, on Ù is said to have law D (á) if, for every ®nite

measurable partition (A1, . . . , An) of Ù, the vector (ì(A1), . . . , ì(An)) has the n-

dimensional Dirichlet distribution D(á(A1), . . . , á(An)). The distribution of (ì(B1),

. . . , ì(Bn)) for arbitrary measurable B1, . . . , Bn follows in an obvious way from the

distributions for partitions.

Let ð be a Dirichlet process prior, D (á), on the space M1(Ù). Then, conditional on

observing ù1, . . . , ùn, the posterior distribution is also a Dirichlet process, but with

parameter á�Pn
i�1äùi

, where äx denotes Dirac measure at x (see Ferguson 1973; 1974).

In other words, the Dirichlet processes D (á), á 2M�(Ù), are a conjugate family of priors.

This property greatly facilitates computation of posterior distributions and is very useful in

analytical work. We now prove an LDP for the sequence of distributions fD (á�Pn
i�1äùi

),

n � 1, 2, . . .g.

Theorem 1. Let á be a ®nite non-negative measure on (Ù, B (Ù)), with support Ù. Let ì be

a probability measure on (Ù, B (Ù)), and let fxng be an Ù-valued sequence such that

1

n

Xn

i�1

äxi
! ì weakly,

where äxi
denotes Dirac measure at xi. Then the sequence of probability measures
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D (á�Pn
i�1äxi

) satis®es an LDP in M1(Ù) equipped with its weak topology, with rate

function I(:) given by

I(í) � H(ìjí),

where H(ìjí) denotes the relative entropy of ì with respect to í.

Corollary. If X i, i 2 N, are independent and identically distributed with common law ì,

then the sequence of empirical distributions (1=n)
Pn

i�1äXi
converges weakly to ì with

probability one. Hence, the sequence of random probability measures D (á�Pn
i�1äXi

)

almost surely satis®es an LDP (on M1(Ù) equipped with its weak topology) with rate

function I(:) � H(ìj:).

Remark 1. There is no loss of generality in the assumption that the support of the prior, á, is

Ù. Indeed, if the prior were supported on some smaller set Ù1, then since the posterior

assigns no mass outside Ù1, we can con®ne ourselves to the closed set Ù1, which is also a

compact metric space.

Remark 2. Lynch and Sethuraman (1987) prove an LDP for the sequence of Dirichlet

distributions D (nì) on [0, 1]. Their result is equivalent to our theorem, for Ù � [0, 1], if

D (nì) and D (á� nìn) are exponentially equivalent whenever ìn converges weakly to ì;

however, establishing exponential equivalence does not appear to be trivial.

We now sketch the main ideas behind the proof before proceeding with a formal

derivation. Let ìn be a random element of M1(Ù) with distribution D (á�Pn
i�1äxi

) as

above. For bounded measurable functions f : Ù! R, we de®ne

Ën( f ) � log E exp

�
Ù

f dìn

� �
: (1)

We show in Lemma 1 below that, for ®nite measurable partitions (A1, . . . , Ak) of Ù, the

vector (ìn(A1), . . . , ìn(Ak)) satis®es the LDP in Rk . We then use Varadhan's integral lemma

(Dembo and Zeitouni 1993, Theorem 4.3.1) to infer the existence of the limit

Ë( f ) � lim
n!1

1

n
Ë(nf ),

for simple functions f �Pk
i�1ci1Ai

; here 1Ai
denotes the indicator of Ai. This is extended in

Lemma 3 to all bounded continuous functions on Ù, using the continuity of Ë(:). By

Theorem 4.5.3 in Dembo and Zeitouni (1993), the existence of the limiting logarithmic

moment generating function, Ë, implies the large-deviation upper bound for the sequence

fìng, for all compact subsets of M1(Ù). Since Ù was assumed to be compact, M1(Ù) is

compact in the weak topology and so the upper bound holds for all closed sets. The rate

function for this upper bound is the convex conjugate of Ë, which we identify to be H(ìj:).
We use the LDP for (ìn(A1), . . . , ìn(Ak)) and the contraction principle (Dembo and

Zeitouni 1993, Theorem 4.2.1) to obtain an LDP for
Pk

i�1ciìn(Ai), for arbitrary constants

ci. Thus, we obtain a large-deviation lower bound for sets of the form
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U (ök , x, ä) � í 2 M1(Ù) :

�
Ù
ök dí 2 (xÿ ä, x� ä)

� �
,

with rate function Hk(ìj:) given in Lemma 2. Here x 2 R and ä. 0 are arbitrary, and ök is

any simple function ök �
Pk

i�1ci1Ai
, so that

�
ök dí �Pcií(Ai). We extend the lower bound

to sets of the form U (ö, x, ä), where ö is any bounded continuous function on Ù, by using

increasingly ®ne partitions of Ù to approximate ö by simple functions. The rate function for

this lower bound is the limit of Hk(ìj:) as the partitions indexed by k get ®ner, which is

shown in Lemma 2 to be H(ìj:). Since the sets U (ö, x, ä) constitute a base for the weak

topology on M1(Ù), this establishes the large-deviation lower bound for all open sets.

The proof of Theorem 1 uses the following lemmas, whose proofs are in the Appendix.

Lemma 1. Let (A1, . . . , Ak) be a measurable partition of Ù and suppose that the interior of

Ai is non-empty for each i � 1, . . . , k. Let f be bounded and measurable with respect to

ó (A1, . . . , Ak), the óalgebra generated by the sets A1, . . . , Ak . Then

Ë( f ) :� lim
n!1

1

n
Ën(nf ) (2)

exists and is ®nite, and is given by

Ë( f ) � sup
í2M1(Ù)

�
Ù

f díÿ H(ìjí)

� �
: (3)

Lemma 2. Let Ak � (Ak
1 , . . . , Ak

nk
), k 2 N, be a sequence of partitions of Ù such that the

corresponding ó-algebras, ó (Ak), increase to B (Ù), the Borel ó-algebra on Ù. Then, for all

í 2M1(Ù), we have

H(ìjí) � sup
k

Hk(ìjí) � lim
k!1

Hk(ìjí),

where Hk(ìjí) :�Pnk

i�1ì(Ak
i )log[ì(Ak

i )=í(Ak
i )].

This result is well known; see Georgii (1988), for example.

Lemma 3. For all bounded, continuous functions f : Ù! R, the limit in (2) exists and is

®nite. The map Ë : C b(Ù)! R is convex and continuous, and we have

Ë( f ) � sup
í2M1(Ù)

�
f díÿ H(ìjí)

� �
:

Here, C b(Ù) denotes the space of bounded continuous functions from Ù to R, equipped with

the supremum norm, k f k1 � supx2Ùj f (x)j.

Proof of Theorem 1. We have from Lemma 3 that Ë is the convex conjugate of H(ìj:). But

H(ìj:) is convex, and lower semicontinuous in the weak topology (see Dupuis and Ellis

1997, Lemma 1.4.3, and recall that M1(Ù) is Polish since Ù is a Polish space). Hence,

H(ìj:) and Ë(:) are convex duals of each other. The large-deviations upper bound for
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compact subsets of M1(Ù) now follows from Dembo and Zeitouni (1993, Theorem 4.5.3).

But Ù was assumed to be compact, hence M1(Ù) is compact in the weak topology, so the

upper bound holds for all closed sets in M1(Ù). We now turn to the proof of the large-

deviations lower bound.

The weak topology on M1(Ù) is generated by the sets

Uö,x,ä � í 2M1(Ù) :

�
Ù
ö díÿ x

���� ����, ä

� �
, ö 2 C b(Ù), x 2 R, ä. 0:

Given such a set and å. 0, we can ®nd a sequence of measurable partitions

Ak � (Ak
1 , . . . , Ak

nk
) of Ù, and a sequence of simple functions ök measurable with respect

to ó (Ak), with the following properties: the ó -algebras ó (Ak) increase to B (Ù), the Borel

óalgebra on Ù; for all k and all i 2 f1, . . . , nkg, Ak
i is a ì-continuity set with non-empty

interior; for some K . 0 and all k . K, kök ÿ ök1, å. We shall assume that å, ä=3. We

now have

P(ìn 2 Uö,x,ä) > P

�
Ù
ök dìn ÿ x

���� ����, äÿ å

� �
, 8k . K: (4)

Let ök �
Pnk

i�1ck
i 1A k

i
. Then

�
Ù
ök dìn �

Xnk

i�1

ck
i ìn(Ak

i ):

It is shown in the proof of Lemma 1 (see equation (13)) that the sequence

(ìn(Ak
1 ), . . . , ìn(Ak

nk
))n>0 satis®es an LDP with rate function Ik given by

Ik(y1, . . . , ynk
) �

Pnk

j�1ì(Aj) log
ì(Aj)

yj

, if y 2 Rnk

� and
Pnk

i�1 yi � 1,

�1, otherwise:

8><>:
It follows from the contraction principle (Dembo and Zeitouni 1993, Theorem 4.2.1) thatPnk

i�1ck
i ìn(Ak

i ) satis®es an LDP with rate function Jk given by

Jk(x) � inf Ik(y) :
Xnk

i�1

ck
i yi � x

( )

� inf Hk(ìjí) : í 2M1(Ù),

�
Ù
ök dí � x

� �
:

In particular, we obtain the large-deviations lower bound,
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lim inf
n!1

1

n
log P

�
Ù
ök dìn ÿ x

���� ����, äÿ å

� �
(5)

> ÿinffJk(y) : jyÿ xj, äÿ åg

� ÿinf Hk(ìjí) : í 2M1(Ù),

�
Ù
ök díÿ x

���� ����, äÿ å

� �
: (6)

Now, köÿ ökk1, å for all k . K, so we have, for all í 2M1(Ù), that�
Ù
ö díÿ x

���� ����, äÿ 2å)
�
Ù
ök díÿ x

���� ����, äÿ å, 8k . K:

It now follows from (4) and (6) that, for all k . K,

lim inf
n!1

1

n
log P(ìn 2 Uö,x,ä) > ÿinf Hk(ìjí) :

�
Ù
ö díÿ x

���� ����, äÿ 2å

� �
:

Hence, we have from Lemma 2 that

lim inf
n!1

1

n
log P(ìn 2 Uö,x,ä) > ÿinf H(ìjí) :

�
Ù
ö díÿ x

���� ����, äÿ 2å

� �
:

Since å. 0 was arbitrary, we can let å decrease to zero, to obtain

lim inf
n!1

1

n
log P(ìn 2 Uö,x,ä) > ÿinf H(ìjí) :

�
Ù
ö díÿ x

���� ����, ä

� �
,

which is the desired large-deviations lower bound for the set Uö,x,ä, with rate function

H(ìj:). We have thus established the large-deviations lower bound for a base of the weak

topology on M1(Ù), and hence for all open sets in this topology. Combined with the upper

bound above, this completes the proof of the theorem. h

We have established an LDP for the sequence of Dirichlet posterior distributions in the weak

topology on M1(Ù), with rate function I(í) � H(ìjí). The rate function differs from that in

Sanov's theorem in that its argument, í, enters as the second rather than the ®rst argument in

the relative entropy function. (Sanov's theorem says that the empirical distribution of a

sequence of independent and identically distributed Ù-valued random variables with common

law ì satis®es an LDP with rate function J (í) � H(íjì).) Intuitively, this is because in

Sanov's theorem we are asking how likely we are to observe í, given that the true distribution

is ì, whereas in this paper we are asking how likely it is that the true distribution is í, given

that we observe ì.

We believe that our result holds for a wider class of priors, of the form described below.

Let P be the set of all ®nite measurable partitions of Ù. For P 2 P , let ó (P) denote the

ó -algebra generated by P. The restriction of a measure í 2M1(Ù) to the ó-algebra ó (P)

is denoted íP. In other words, íP � E[íjó (P)]. For a prior ð 2M1(M1(Ù)) we denote by

ðP the corresponding element in M1(M1(Ù, ó (P))), thus the restriction of ð to the Borel

ó-algebra B (M1(Ù, ó (P))). We ®x a subset P 9 of P and say that a prior measure
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ð 2M1(M1(Ù)) is exchangeable with respect to ®nite projections in P 9 if, for every

P 2 P 9, we have

[ðn(ìn)]P � ðn
P(ìn,P):

Here ðn(ìn) denotes the posterior distribution on M1(Ù, B (Ù)) corresponding to the prior ð
and the empirical distribution ìn; [ðn(ìn)]P its restriction to ó (P); and ðn

P(ìn,P) the

posterior distribution on M1(Ù, ó (P)) corresponding to the prior ðP and the empirical

distribution restricted to ó (P).

The essential property of the Dirichlet process that we have used in the proof of Theorem

1 is its exchangeability with respect to P 9, where P 9 is the collection of ®nite partitions

consisting of sets with non-empty interiors. This collection is large enough to generate the

Borel ó-algebra on Ù. We believe that our methods can be generalized to priors which are

exchangeable with respect to ®nite projections in P 9, for some P 9 which generates the

Borel ó-algebra on Ù, although there do seem to be some technical dif®culties which we

hope to address in future work. An example of a class of priors which are exchangeable

with respect to ®nite projections are the PoÂlya tree distributions studied by Mauldin et al.

(1992) and Lavine (1992), which generalize the Dirichlet process.

3. Application to the gambler's ruin problem

Suppose now that Ù is a compact subset of R. As before, fX kg is a sequence of independent,

identically distributed random variables with common law ì 2M1(Ù), and we are interested

in level-crossing probabilities for the random walk Sn � X1 � . . . � Xn. For Q . 0, denote

by R(Q, ì) the probability that the walk ever exceeds the level Q. If a gambler has initial

capital Q, and loses amount X k on the k th bet, then R(Q, ì) is the probability of ultimate

ruin. If the underlying distribution ì is unknown, the gambler may wish to assess this

probability based on experience: this leads to a predictive probability of ruin, given by the

formula

Pn(Q, ìn) �
�

R(Q, ë)ðn(dë),

where, as before, ìn is the empirical distribution of the ®rst n observations and ðn � ðn(ìn)

is the posterior distribution corresponding to some prior, ð, and the empirical distribution,

ìn. A standard re®nement of Wald's approximation yields

Ceÿä( ì)Q < R(Q, ì) < eÿä( ì)Q,

for some C . 0, where

ä(ì) � sup è > 0 :

�
eèxì(dx) < 1

� �
:

Thus,
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C

�
M1(Ù)

eÿä(ë)Qðn(dë) < Pn(Q, ìn) <

�
M1(Ù)

eÿä(ë)Qðn(dë):

Now, if ð is the Dirichlet process D (á), parametrized by an arbitrary ®nite positive measure

á whose support is all of Ù, then the sequence ðn obeys an LDP by Theorem 1, and we can

apply Varadhan's lemma (see, for example, Dembo and Zeitouni 1993, Theorem 4.3.1) to

obtain the asymptotic formula, for q . 0,

lim
n!1

1

n
log Pn(qn, ìn) � ÿinffH(ìjí)� ä(í)q : í 2 suppðg,

on the set ìn ! ì. Here, we are using the easy (Ù is compact) fact that ä : M1(Ù)! R� is

continuous. This formula can be simpli®ed in special cases. Its implications for risk and

network management are discussed in Ganesh et al. (1998).

4. Conclusion

In this paper, we establish a large-deviation principle for the sequence of Bayesian posteriors

induced by a Dirichlet prior on a compact metric space Ù. Can the result be extended to an

arbitrary Polish space? Our approach yields the large-deviation lower bound for arbitrary

open subsets of this space, and the upper bound for compact subsets. In other words, we can

prove a weak LDP on a Polish space. This could be strengthened to a full LDP if the

sequence of Dirichlet posteriors were exponentially tight. However, exponential tightness of

this sequence would imply the goodness of the rate function H(ìj:), which we know not to

be true in general. For example, take Ù � R, ì � ä0, the unit mass at 0, and

ín � (1
2
)ä0 � (1

2
)än. Then H(ìjín) � log 2 for all n, but the sequence ín is not tight. This

implies that H(ìj:) does not have compact level sets, that is, it is not a good rate function.

Hence, our method cannot be easily extended to arbitrary Polish spaces. Finally, while we

have worked with Dirichlet process priors, we believe that our approach can be extended to

priors with the appropriate exchangeability properties, as discussed at the end of Section 2.

However, there do appear to be some technical dif®culties with this approach, which we hope

to address in future work.

Appendix: Proofs

Proof of Lemma 1. Let (A1, . . . , Ak) be a partition of Ù such that the interior of Ai is non-

empty and that Ai is a ì-continuity set for every i � 1, . . . , k. Let f be bounded and

measurable with respect to the ó-algebra generated by the partition. Then we can write

f �
Xk

i�1

ci1Ai
, (7)

for some constants ci, where 1Ai
denotes the indicator of Ai. Then, by (1),
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Ën( f ) � log E exp
Xk

i�1

ciìn(Ai)

" #
: (8)

By the assumption that each Ai has non-empty interior and that the support of á is Ù, we

have

án(Aj) :� á(Aj)�
Xn

i�1

äxi
(Aj) . 0, 8n 2 N, j � 1, . . . , k: (9)

We have from the de®nition of the Dirichlet distribution that

(ìn(A1), . . . , ìn(Ak)) � Z1
nPk

i�1 Zi
n

, . . . ,
Z k

nPk
i�1 Zi

n

 !
,

where the Zi
n are independent gamma random variables, with

Z j
n � G (án(Aj), 1),

and án is de®ned in (9). Here G (á, 1) denotes the gamma distribution with shape parameter

á and scale parameter 1. It is straightforward to evaluate the cumulant generating functions

of the Z j
n. We have

ë j
n(è) :� log E[exp(èZ j

n)] � ÿán(Aj)log(1ÿ è), if è, 1,

�1, otherwise:

�
Since

Pn
i�1äxi

(Aj)=n! ì(Aj) by assumption, we obtain

ë j(è) :� lim
n!1

1

n
ë j

n(è) � ÿì(Aj)log(1ÿ è), if è, 1,

�1, otherwise:

�
Hence, by the GaÈrtner±Ellis theorem (see Dembo and Zeitouni 1993, Theorem 2.3.6), the

sequence of random variables Z j
n=n satis®es an LDP in R with rate function ë�j which is the

convex dual of ë j, that is,

ë�j (x) � sup
è2R

[èxÿ ë j(è)] � xÿ ì(Aj)� ì(Aj)log
ì(Aj)

x
, if x . 0,

�1, otherwise:

8<: (10)

If ì(Aj) � 0, then the assumption of steepness of ë j is not satis®ed, so the GaÈrtner±Ellis

theorem does not apply. However, it is not hard to verify directly in this case that Z j
n=n does

indeed satisfy an LDP with the above rate function.

Since fZ j
n, j � 1, . . . , kg are independent, fZ j

n=n, j � 1, . . . , kg jointly satisfy an LDP in

Rk with rate function ë�(x) �Pk
j�1ë
�
j (xj), where x � (x1, . . . , xk) and ë�j is given by (10).

De®ne Y j
n � Z j

n=
Pk

i�1 Zi
n. Since

Pk
i�1 Zi

n is strictly positive with probability 1, the maps

(Z1
n, . . . , Z k

n)! (Y 1
n, . . . , Y k

n)

are almost surely continuous for every n. It follows from the contraction principle (Dembo

and Zeitouni 1993, Theorem 4.2.1) that fY j
n, j � 1, . . . , kg jointly satisfy an LDP with rate

function I given by
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I(y1, . . . , yk) � inf
Xk

j�1

ë�j (zj) : yj � zjPk
i�1 zi

, j � 1, . . . , k

8<:
9=;: (11)

If yj , 0 for some j, then any z included in the in®mum in (11) must have zi , 0 for some i

and so, by (10) I(y) � 1. Next, if yj � 0 for all j or if
Pn

i�1 yi 6� 1, then there is no z 2 Rk

such that yj � zj=
Pk

i�1zi for all j. Hence I(y), being the in®mum of an empty set, is again

�1.

In the following, we shall con®ne attention to y 2 Rk such that y > 0 and
Pk

i�1 yi � 1. If

z 2 Rk is such that yj � zj=
Pk

i�1zi for all j � 1, . . . , k, then we can write z � ây for some

â. y. Now (11) gives

I(y1, . . . , yk) � inf
â.0

Xk

j�1

ë�j (âyj): (12)

Setting the derivative of the sum on the right with respect to â equal to zero yields

0 �
Xk

j�1

yj ÿ ì(Aj)

â

� �
� 1ÿ 1

â
:

To obtain the last equality, we have used the fact that
Pk

j�1 yj � 1 by assumption, whilePk
j�1ì(Aj) � 1 as ì is a probability distribution and A1, . . . , Ak partition Ù. Since each ë�j

is convex, the above implies that the in®mum in (12) is achieved at â � 1, and

I(y) �
Xk

j�1

ë�j (yj) �
Xk

j�1

yj ÿ ì(Aj)� ì(Aj)log
ì(Aj)

yj

�
Xk

j�1

ì(Aj)log
ì(Aj)

yj

:

The second equality above comes from (10) and the third follows from the fact that ì and y

are both probability distributions, and hence sum to 1. It follows from the preceding

discussion that the sequence of random vectors (ìn(A1), . . . , ìn(Ak)) satis®es an LDP in Rk

with rate function

I(y) �
Xk

j�1

ì(Aj)log
ì(Aj)

yj

, if y 2 Rk
� and

Xk

i�1

yi � 1,

�1, otherwise:

8>><>>: (13)

Observe from (7) that j � f dìnj < maxk
i�1jcij as ìn is a probability distribution. Hence,

we have from Varadhan's lemma (Dembo and Zeitouni 1993, Theorem 4.3.1) and the LDP

for (ìn(A1), . . . , ìn(Ak)) that

Ë( f ) :� lim
n!1

1

n
Ën(nf ) � sup

y2R k

Xk

i�1

ciyi ÿ I(y)

" #
:
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Using (13), we can rewrite the above as

Ë( f ) � sup
í2M1(Ù)

Xk

i�1

cií(Ai)ÿ
Xk

i�1

ì(Ai)log
ì(Ai)

í(Ai)

" #

� sup
í2M1(Ù)

�
Ù

f díÿ Hk(ìjí)

� �
, (14)

where Hk(ìjí) is de®ned in Lemma 2. We now show that we can replace Hk(ìjí) in the

supremum above by H(ìjí).

Let í 2M1(Ù) be arbitrary. If ì(Ai) . 0 and í(Ai) � 0 for some Ai, then ì 6� í and

H(ìjí) and Hk(ìjí) are both in®nite. Hence, such í can be excluded from consideration of

the supremum above, and we shall suppose without loss of generality that ì(Ai) � 0

whenever í(Ai) � 0. We now de®ne ë 2M1(Ù) as follows. Set ë � í on Ai if ì(Ai) � 0; if

ì(Ai) . 0, take ë to be absolutely continuous with respect to ì on Ai, with Radon±

Nikodym derivative

dë

dì
� í(Ai)

ì(Ai)
. 0:

Then ì is absolutely continuous with respect to ë and we have

H(ìjë) �
�
Ù

dì log
dì

dë
�

X
i:ì(Ai) . 0

�
Ai

dì log
dì

dë

�
X

i:ì(Ai) . 0

ì(Ai) log
ì(Ai)

í(Ai)
� Hk(ìjí): (15)

Also, �
Ù

f dí �
Xk

i�1

cií(Ai) �
Xk

i�1

cië(Ai) �
�
Ù

f dë: (16)

Since í 2M1(Ù) was arbitrary, we obtain from (15) and (16) that

sup
í2M1(Ù)

�
Ù

f díÿ Hk(ìjí)

� �
< sup

ë2M1(Ù)

�
Ù

f d ëÿ H(ìjë)

� �
:

The reverse inequality holds as well because Hk(ìjí) < H(ìjí) for all í 2M1(Ù) by

Lemma 2 (or by the convexity of x 7! x log x on [0, 1)). Hence, equality holds above and

the claim of the lemma follows from (14). h

Proof of Lemma 3. Let å. 0 be given, and let f : Ù! R be bounded and continuous. We

can ®nd k . 0 and a simple function g �Pk
i�1ci1Ai

such that k f ÿ gk1, å. Since f is

continuous, we can in fact choose the Ai to be ì-continuity sets with non-empty interiors.

Now, by (1) and the fact that each ìn is a probability distribution,
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Ën(nf ) � log E exp

�
Ù

nf dìn

� �
< log E exp

�
Ù

ng dìn � nå

� �� �
� nå�Ën(ng),

so that, by (2),

lim sup
n!1

1

n
Ën(nf ) < Ë(g)� å:

Likewise, lim inf n!1Ën(nf )=n > Ë(g)ÿ å. Since å. 0 is arbitrary, it follows that

Ë( f ) :� lim
n!1

1

n
Ën(nf )

exists and is ®nite for all bounded, continuous f : Ù! R. The arguments above also show

that Ë : C b(Ù)! R is continuous, with jË( f )ÿË(g)j < k f ÿ gk1.

For f 2 L1(Ù), de®ne

H�( f ) � sup
í2M1(Ù)

�
Ù

f díÿ H(ìjí)

� �
, (17)

that is, H� is the convex conjugate of H(ìj:). Now j � f díj < k f k1 for all í 2M1(Ù),

while H(ìj:) is non-negative, with H(ìjì) � 0. Thus, jH�( f )j < k f k1. Since H� is a

convex function with domain L1(Ù), which is bounded on the open neighbourhood

f f : k f k1, 1g, we have by Rockafellar (1974, Theorem 8) that H� is continuous on the

interior of its domain, which is all of L1(Ù).

By Lemma 1, H� and Ë agree on functions of the form f �Pk
i�1ci1Ai

, where the Ai

partition Ù and each Ai is a ì-continuity set with non-empty interior. Since such functions

are dense in C b(Ù), Ë was shown to be continuous on C b(Ù) and H� to be continuous on

L1(Ù) � C b(Ù), it follows that Ë � H� on all of C b(Ù) and, consequently, that Ë is

convex. h
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