
A LARGE DEVIATION PRINCIPLE WITH
QUEUEING APPLICATIONS

A.J. GANESHa,†,* and NEIL O’CONNELLb

aMicrosoft Research, 7 JJ Thomson Ave., Cambridge CB3 OFB, UK
bBRIMS, Hewlett-Packard Labs, Filton Road, Bristol BS12 6QZ, UK

(Revised 11 May 1999; In final form 22 July 2001)

In this paper, we present a large deviation principle for partial sums processes indexed by the half line,
which is particularly suited to queueing applications. The large deviation principle is established in a
topology that is finer than the topology of uniform convergence on compacts and in which the
queueing map is continuous. Consequently, a large deviation principle for steady-state queue lengths
can be obtained immediately via the contraction principle.
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The main result in this paper provides a new tool for looking at large deviations

for queueing systems in equilibrium. Equilibrium systems have generally been

treated on a case-by-case basis, with much work and/or additional hypotheses

necessary to prove large deviation principles (see, for example, Refs.

[1,6,7,16,18,23]). We provide a simple sufficient condition for the usual sample

path LDP (as in Mogulskii’s theorem) to be strengthened to a topology for which

the reflection mappings appearing in many queueing applications are continuous

and the contraction principle can be applied. A step in this direction was made by

Dobrushin and Pechersky [13], who introduce a finer topology (a gauge topology)
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which allows one to treat the single server queue with constant service rate, and

prove the LDP in this topology for a class of Markov jump processes. However,

this does not easily extend to more complicated network configurations, or even

to the single server queue with stochastic service rate. The main result in this

paper can be (and has been) applied to some quite complicated multidimensional

systems with interacting traffic [21,22,24].

The context in which the need for our main result arises is a general scheme

which can be applied to a variety of network problems where the goal is to establish

probability approximations for aspects of a system (such as queue lengths) under

very general ergodicity and mixing assumptions about the network inputs.

Suppose that the inputs to a network can be represented by a sequence of

random variables (Xk) in Rd, and that the (sequence of) objects of interest, (On),

can be expressed as a function of the partial sums process corresponding to X. To

make this more precise, for t $ 0 set

SnðtÞ ¼
1

n

X½nt�

k¼1

Xk; ð1Þ

where [x ] denotes the integer part of x, and write ~Sn for the polygonal

approximation to Sn:

~SnðtÞ ¼ SnðtÞ þ t 2
½nt�

n

� �
Sn

½nt� þ 1

n

� �
2 Sn

½nt�

n

� �� �
: ð2Þ

Denote by C(Rþ) the space of continuous functions on Rþ. Then ~Sn [ C dðRþÞ

and our supposition is that there exists a function f : C dðRþÞ! X; for some

space X, such that On ¼ f ð~SnÞ; for each n.

For example, suppose d ¼ 1 and Xk is the difference between the amount of

work arriving at time 2k at a single-server queue and the available service

capacity at that time. Suppose also that the limit,

m U
n!1
lim
Xn

k¼1

Xk=n

exists almost surely and is less than 0. Then the queue length at time zero is given by

Q0 ¼
n$0
sup
Xn

k¼0

Xk; ð3Þ

or, equivalently, Q0=n ¼ f ð ~SnÞ;where f : CðRþÞ! R
S

{1} is defined by

f ðfÞ ¼
t$0
supfðtÞ: ð4Þ
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If the sequence Xk is stationary and ergodic, then Q0 represents the equilibrium

queue-length distribution. In this example, On ¼ Q0=n:

The idea is to deduce a large deviation principle (see below) for On from one

which can generally be assumed for ~Sn: This can be done using the contraction

principle, which we will now describe.

Let X be a Hausdorff topological space with Borel s-algebra B, and let mn be a

sequence of probability measures on (X, B). We say that mn satisfies the large

deviation principle (LDP) with rate function I, if I : X ! R
S

{1} is non-

negative and lower semicontinuous, and for all B [ B,

2
x[B 0
infIðxÞ #

n
lim inf

1

n
logmnðBÞ #

n
lim sup

1

n
logmnðBÞ # 2

x[ �B
infIðxÞ; ð5Þ

here, B 0 and �B denote the interior and closure of B, respectively. If, for each n, Zn

is a realization of mn, it is sometimes convenient to say that the sequence Zn

satisfies the LDP. A rate function is good if its level sets are compact. The

contraction principle states that if Zn satisfies the LDP in a Hausdorff topological

space X with good rate function I, and f is a continuous mapping from X into

another Hausdorff topological space Y, then the sequence f(Zn) satisfies the LDP

in Y with good rate function given by

JðyÞ ¼ inf{IðxÞ : f ðxÞ ¼ y}:

Now consider the partial sums process ~Sn: Denote by ~Sn½0; 1� the restriction of
~Sn to the unit interval, by C[0,1] the space of continuous functions on [0,1],

equipped with the uniform topology, and by A[0,1] the subspace of absolutely

continuous functions f on [0,1] with fð0Þ ¼ 0: Dembo and Zajic [9] establish

quite general conditions for which ~Sn½0; 1� satisfies the LDP in A[0,1] with good

convex rate function given by

I1ðfÞ ¼

Ð 1

0
L* ð _fÞ ds f [ A½0; 1�

1 otherwise;

8<: ð6Þ

where L* is the Fenchel–Legendre transform of the scaled cumulant generating

function

LðlÞ ¼
n!1
lim

1

n
log E enl·Snð1Þ; ð7Þ

which is assumed to exist for each l [ Rd as an extended real number. For such

an LDP to hold in the i.i.d. case, it is sufficient that the moment generating

function E el·X1 exists and is finite everywhere; this is a classical result, due to

Varadhan [25] and Mogulskii [19]. This LDP is usually extended to the space
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C(Rþ), (of continuous functions on Rþ), via the Dawson Gärtner theorem for

projective limits. However, the projective limit topology (the topology of

uniform convergence on compact intervals) is not strong enough for many

applications; in particular, the function f defined by Eq. (4) is not continuous in

this topology on any supporting subspace, and so the contraction principle does

not apply. To see this, consider

fnðtÞ ¼
t=n; 0 # t # n;

1; t $ n:

(

fn ! f ; 0; uniformly on compact sets, but f ðfnÞ ¼ 1 for all n whereas

f ðfÞ ¼ 0:

The lack of continuity was observed by Dobrushin and Pechersky [13], who

introduce a finer topology (a gauge topology) which allows one to treat the single

server queue with constant service rate, and prove the LDP in this topology for a

class of Markov jump processes. In this topology, the restriction of the mapping

in Eq. (4) to a certain subspace of paths f with limits

t!1
limfðtÞ=t ¼ m , 0;

is continuous. However, this does not easily extend to more complicated network

configurations, or even to the single server queue with (stochastic) time-varying

capacity.

We consider the set of paths

Y ¼
\d
j¼1

f [ CdðRþÞ :
t!1
lim

f jðtÞ

1þ t
exists

� �
;

where f j(t ) denotes the jth component of f(t ), and equip Y with the norm

kfku ¼
j

sup
t

sup
f jðtÞ

1þ t

���� ����:
Note that Y can be identified with the Polish space C dðR*

þÞ of continuous

functions on the extended (and compactified) real line, equipped with the

supremum norm, via the bijective mapping fðtÞ 7! fðtÞ=ð1þ tÞ: In particular, Y

is a Polish space. We prove the following.

Theorem 1 Suppose that for each u [ Rd; the limit

LðuÞ ¼
n!1
lim

1

n
log E enu· ~Snð1Þ; ð8Þ

exists as an extended real number, and the sequence ~Sn½0; 1� satisfies the LDP in
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C d[0,1] with good rate function given by

I1ðfÞ ¼

Ð 1

0
L* ð _fÞ ds f [ Ad½0; 1�;

1 otherwise

(

whereL* is the convex dual of L. If L is differentiable at the origin, then ~Sn

satisfies the LDP in Y with good rate function

I1ðfÞ ¼

Ð1

0
L* ð _fÞ ds f [ AdðRþÞ> Y;

1 otherwise

(

Here, Ad[0,1] (resp. Ad(Rþ)) denotes the space of absolutely continuous

functions, f, from [0,1] (resp. Rþ) to Rd with fð0Þ ¼ 0: Although, our topology

on Y is quite different from the gauge topology introduced by Dobrushin and

Pechersky [13], conceptually, it is quite similar: the idea is to get some kind of

uniform control over the sample average. We have also used some ideas from

their paper in the proof of Theorem 1 below, in order to construct compact sets

that support most of the measure. Eichelsbacher and O’Connell [15] extend the

sample path LDP to an even finer topology on Y than considered here, under the

additional assumption that Xk is an iid sequence. We remark also that Deuschel

and Stroock [11] prove a version of Schilder’s theorem in the space Y, using

essentially Gaussian techniques.

To illustrate how Theorem 1 can be applied, we will continue to work through

the single-server queue example: suppose d ¼ 1 and consider the function f

defined by Eq. (4). Recall that f ð~SnÞ is equal in distribution to the normalized

queue length at a single-server queue. If L0ð0Þ ¼ m; say, then a corollary of

Theorem 1 is that the LDP holds in the subspace

Ym ¼ f [ Y :
t!1
lim

fðtÞ

1þ t
¼ m

� �
:

If m , 0; then the restriction of f to Ym is finite and continuous. To see this,

note that Ym is a metric space and so we can check continuity using sequences.

Take fn ! f in Ym. Then, for any 1 . 0 there exists N such that for all n . N we

have fnðtÞ # fðtÞ þ 1ð1þ tÞ for all t $ 0: Since f [ Ym we also have fðtÞ ,

ðmþ 1Þð1þ tÞ for all t sufficiently large (t . T say). Thus, for all n . N and

t . T; fnðtÞ , ðmþ 21Þð1þ tÞwhich, in particular, is negative for small 1:Now,

since fð0Þ ¼ fnð0Þ ¼ 0 for all n, we can completely ignore what happens outside

the interval ½0; T�: The suprema are attained on this interval; moreover, fn ! f

in Ym implies that fn ! f uniformly on ½0; T�; and so the supremum converges
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on this interval. Hence, f is continuous on Ym. We can therefore apply the

contraction principle and Jensen’s inequality to get that the sequence Q0=n ¼

f ð ~SnÞ satisfies the LDP in Rþ with rate function given by

JðqÞ ¼ inf

ð1

0

L* ð _fÞ ds :
t.0
supfðtÞ ¼ q

( )

¼
t.0
inf inf

ðt
0

L* ð _fÞ ds : fðtÞ ¼ q

� �
¼

t.0
inftL* ðq=tÞ:

This fact has previously been demonstrated by several authors [5,12,14,17],

under similar conditions. The i.i.d. case is due to Cramér [8] and Borovkov [4].

The advantage of our approach is that the existence of an LDP is established by

continuity which, using the above topology, is quite accessible, and the rate

function is easier to compute.

Finally, we remark that this result is not specifically designed for the single-

server queue. It is widely applicable, and ideally suited to problems where

reflection mappings exist. It has been used, for example, to obtain comprehensive

equilibrium large deviations results for a multiclass FIFO queue [21] and can also

be applied to systems with dedicated buffers [20,22] (the latter corresponds to the

random walk in a quadrant, and is the subject of many recent papers: see, for

example, Bertsimas et al. [2,3]).

Proof of Theorem 1 We have from the assumptions of the theorem and the

Dawson–Gärtner theorem for projective limits ([10], Theorem 4.6.1) that the

sequence ~Sn satisfies the LDP on CdðRþÞ; equipped with the topology of uniform

convergence on compacts, with the good rate function

IðfÞ ¼

Ð1

0
L* ð _fÞ ds f [ AdðRþÞ;

1 otherwise

(

We first show that ~Sn satisfies the LDP on Y with the same rate function by

showing that DI , Y and Pð~Sn [ YÞ ¼ 1:

By considering ~SnðtÞ2 t7Lð0Þ we can, without loss of generality, assume that

7Lð0Þ ¼ 0: Let f belong to the domain of I. Then f is absolutely continuous, and

we have from the non-negativity and convexity of L* ; and Jensen’s inequality,

that

tL* ðfðtÞ=tÞ # IðfÞ:

Since this holds for all t, we must have L* ðfðtÞ=tÞ! 0 as t ! 1: Now, by the

assumption that L is differentiable at the origin, L* has a unique zero at 7Lð0Þ ¼

0: Hence, fðtÞ=t ! 0 as t ! 1; and so f [ Y: Moreover, by the assumption that
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~Sn½0; 1� satisfies the LDP in C d½0; 1� and the contraction principle, ~Snð1Þ ¼

ð1=nÞ
Pn

k¼1Xk satisfies the LDP in R with rate function L* : As already noted, L*

has a unique zero at E½X1� ¼ 0: Hence, for any 1 . 0; there is a d . 0 such that

Pðj ~Snð1Þj . 1Þ , e2nd for all n sufficiently large. Thus, by the Borel–Cantelli

Lemma, ~Snð1Þ ¼ ð1=nÞ
Pn

k¼1Xk ! 0 as n ! 1; from which it is immediate that,

for every fixed n,

t!1
lim

~SnðtÞ

t
¼ 0 a:s:

Hence, Pð~Sn [ YÞ ¼ 1:

We now have by ([10], Lemma 4.1.5) that ~Sn satisfies the LDP in Y when

equipped with the topology of uniform convergence on compact intervals, and

that the rate function is I1 (the restriction of I to Y). To strengthen this to the

topology induced by the norm k·ku;we appeal to the inverse contraction principle

([10], Corollary 4.2.6), by which it suffices to prove exponential tightness of the

sequence ~Sn in the space ðY; k·kuÞ:

By the Dawson–Gärtner theorem and the assumption that I1 is good, I1 is a

good rate function in the topology of uniform convergence on compact intervals.

Hence, the set

Ka ¼ {f [ CdðRþÞ : I1ðfÞ # a}

is compact in this topology, and

n
lim sup

1

n
log P{ ~Sn Ó Ka} # 2a: ð9Þ

By assumption, L is finite in a neighbourhood of the origin, so we can find u0 . 0

such that jLjðuÞj , 1 for all juj # u0 and j ¼ 1; . . .; d: Here,

LjðuÞ U n!1
lim

1

n
log E enu ~S

j

nð1Þ;

where ~S
j

n is the jth component of ~Sn; in other words, LjðuÞ ¼ LðuejÞ where ej

denotes the jth unit vector. We now define the following quantities:

dðnÞ ¼
m$n
sup

juj,u0

sup
1#j#d
max

1

m
log E emu ~S

j

mð1Þ 2 LjðuÞ

���� ����;
uðnÞ ¼ min

u0

2
;
ffiffiffiffiffiffiffiffiffi
dðnÞ

p
; n21=4

� �
;

daðnÞ ¼ ðaþ 1Þ
1#j#d
max

jLjðuðnÞÞj þ jLjð2uðnÞÞj þ dðnÞ

uðnÞ
þ n21=4

� �
:
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It is not hard to see that d(n ), u(n ) and daðnÞ all decrease to zero as n increases to

infinity (for da(n ), we use the assumption that 7Ljð0Þ ¼ 0).

Consider the set

Da ¼ f [ Ka :
1#j#d
max

f jðtÞ

1þ t

���� ���� # dað½t�Þ for all t $ 1

� �
;

where [t ] denotes the integer part of t. Now f ; 0 belongs to Da because

L* ð0Þ ¼ 0 as a consequence of the assumption that 7Lð0Þ ¼ 0: Thus, Da is non-

empty. The exponential tightness of ~Sn in ðY; k·kuÞ will be established by the

following two lemmas. A

Lemma 1 For each a . 0; Da is compact in ðY; k·kuÞ:

Proof Let fn be a sequence in Da. Since Ka is compact in Y equipped with the

topology of uniform convergence on compact intervals, there exists a

subsequence n(k ) such that fnðkÞ converges to some f [ Ka in this topology.

It follows that, for each T . 0; and for each j,

k!1
lim

t#T
sup

f
j
nðkÞðtÞ

1þ t
2

f jðtÞ

1þ t

�����
����� ¼ 0; j ¼ 1; . . .; d:

Note that this implies, for each t and j, that

f jðtÞ

1þ t

���� ���� # dað½t�Þ;

and so f [ Da: Now for each 1 . 0; there is a finite T such that daðTÞ # 1:

Hence, for k sufficiently large,

kfnðkÞ 2 fku #
j

sup
t#T
sup

f
j
nðkÞðtÞ

1þ t
2

f jðtÞ

1þ t

�����
�����þ t.T

sup
f

j
nðkÞðtÞ

1þ t
2

f jðtÞ

1þ t

�����
�����

( )

# 1þ 2daðTÞ # 31:

The set Da is therefore sequentially compact, and hence compact, in the metric

space ðY; k·kuÞ: A

Lemma 2 Under the hypotheses of Theorem 1,

a!1
lim

n
lim sup

1

n
log Pð ~Sn Ó DaÞ ¼ 21:
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Proof By Chernoff’s inequality,

P
t$1

[
~S
j

nðtÞ . ð1þ tÞdaðtÞ
n o

# P
[1
k¼1

[n21

i¼0

~S
j

nðk þ ði=nÞÞ . ð1þ kÞdaðk þ 1Þ
n o

#
X1
k¼1

Xn21

i¼0

E exp nuðk þ 1Þ ~S
j

nðk þ ði=nÞÞ2 nuðk þ 1Þðk þ ði=nÞÞdaðk þ 1Þ
h i

¼
X1
k¼1

Xn21

i¼0

E exp ðnk þ iÞuðk þ 1Þ ~S
j

nkþið1Þ2 ðnk þ iÞuðk þ 1Þdaðk þ 1Þ
h i

#
X1
k¼1

Xn21

i¼0

expðnk þ iÞ½Ljðuðk þ 1ÞÞ þ dðnk þ iÞ2 uðk þ 1Þdaðk þ 1Þ�;

where the last inequality is valid for n sufficiently large, when it follows from the

inequality,

E enu ~S
j

nð1Þ
h i

# en½LjðuÞþdðnÞ�;

which holds for all n $ 1 and all juj , u0 by definition of d(n ). We note that

0 # uðkÞ , u0=2 for all k [ N by definition. Now,

daðkÞuðkÞ $ ðaþ 1ÞðjLjðuðkÞÞj þ dðkÞ þ uðkÞk 21=4Þ ; k $ 1

by definition of da. Moreover, d(k ) is a decreasing, non-negative function of k

and uðkÞ $ min{u0=2; k 21=4} by definition, so we get

Ljðuðk þ 1ÞÞ þ dðnk þ iÞ2 uðk þ 1Þdaðk þ 1Þ

# 2aðjLjðuðk þ 1ÞÞj þ dðk þ 1Þ þ uðk þ 1Þðk þ 1Þ21=4Þ

# 2amin{u0=2; ðk þ 1Þ21=4}ðk þ 1Þ21=4 # 2amin{u0=2; 1}ðk þ 1Þ21=2

# 2
a

2
min{u0=2; 1} k þ

i

n

� �21=2

; k $ 1; 0 # i # n 2 1:

Consequently, defining ~a ¼ amin{u0=2; 1}; we get

P
t$1

[
~S
j

nðtÞ . ð1þ tÞdaðtÞ
n o

#
X1
k¼1

Xn21

i¼0

exp 2
~a

2
ðnk þ iÞ k þ

i

n

� �21=2
" #

#
X1
j¼n

exp 2
~a

2

ffiffiffi
n
p ffiffi

j
p� �

# D exp 2
~a

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn 2 1Þ

p

AN LDP WITH QUEUEING APPLICATIONS 33



for some finite constant D that remains bounded as a and n increase to infinity.

Here, we have used the inequality

k$k0

X
e2r

ffiffi
k
p

#
4e21 þ 2

r2
exp 2

r

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k0 2 1

p� �
;

obtained as follows:

k$k0

X
e2r

ffiffi
k
p

#

ð1

k021

e2r
ffiffi
x
p

dx ¼
2

r2

ð1

r
ffiffiffiffiffiffiffiffi
k021
p

ze2z dz ¼
2

r2
½r

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k0 2 1

p
þ 1�e2r

ffiffiffiffiffiffiffiffi
k021
p

#
4e21 þ 2

r2
exp 2

r

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k0 2 1

p� �
To obtain the last inequality above, we used the fact that xe2x # e21 and

e2x # 1 for all x $ 0: Likewise, we can show that

P
t$1

[
~S
j

nðtÞ , 2ð1þ tÞdaðtÞ
n o

# D exp 2
~a

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn 2 1Þ

p
:

Therefore,

n
lim sup

1

n
log P

t.1

[
~S

j

nðtÞ
��� ��� . ð1þ tÞdaðtÞ
n o

# 2
a

4
min

u0

2
; 1

� �
: ð10Þ

The statement of the lemma can now be obtained from Eqs. (9) and (10), via the

principle of the largest term. A

This concludes the proof of the theorem.
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