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ABSTRACT: We study the two-sample matching problem and its connections with

the Monge-Kantorovich problem of optimal transportation of mass. We exploit

this connection to obtain moderate and large deviation principles. For the classical

problem on the unit square we present a conjecture which, if true, yields an explicit

formula for the rate function.
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1 Introduction

Let Xi and Yi be independent random variables, uniformly distributed on
the unit square, and consider the random quantity

T 1
n = inf

σ∈Sn

n∑
i=1

|Xi − Yσ(i)|,

where Sn denotes the set of permutations of {1, . . . , n}. This is the canonical
two-sample matching problem. Ajtai, Komlòs and Tusnàdy [1] prove the
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following: there exists K > 0 such that

1
K

(n log n)1/2 < T 1
n < K(n log n)1/2, (1.1)

with probability 1 − o(1). Refinements and extensions of this result have
been obtained by Shor [12] and Talagrand [13], among others. It is still
an open problem to determine if (n log n)−1/2T 1

n actually converges, even in
expectation. A related problem is to determine the asymptotics of

T∞n = inf
σ∈Sn

max
i≤n

|Xi − Yσ(i)|.

Leighton and Shor [9] obtained the following analogue of (1.1): there exists
K > 0 such that

1
K

n−1/2(log n)3/4 < T∞n < Kn−1/2(log n)3/4, (1.2)

with probability 1 − o(1). Concentration inequalities for these problems
have also been obtained. One of the main tools is the connection with
empirical processes. By ‘duality’, or generalisations of the marriage lemma,
the random variable T 1

n can be related to the ‘empirical discrepancies’

Dn(X) = ‖Ln − λ‖F

and
Dn(Y ) = ‖Mn − λ‖F ,

where Ln = 1
n

∑n
i=1 δXi , Mn = 1

n

∑n
i=1 δYi , λ is Lebesgue measure on the

unit square. Here
‖µ‖F = sup{|µ(f)| : f ∈ F}, (1.3)

where F is taken to be the set of Lipschitz continuous functions on the unit
square with Lipschitz constant 1 and µ(f) denotes

∫
fdµ (see, for exam-

ple, [13]). The norm is defined on the set of signed measure µ such that
µ
(
[0, 1]2

)
= 0. The asymptotics of such measures of empirical discrepancy

have been studied extensively in the empirical processes literature. One
motivation is the fact that on the space of probability measures the metric
defined by β(µ, ν) = ‖µ−ν‖F generates the weak topology (see, for example,
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Dudley [3]). In particular, Dudley [4] obtains mean rates of convergence for
β(Ln, λ) (actually, he considers a much more general setting); he obtains, in
this case, the estimate

Eβ(Ln, λ) ≤ cn−1/2(1 + log n).

This should be compared with (1.1).

The outline of the rest of the paper is as follows. In Section 2, we give some
background on the Monge-Kantorovich problem and make the connections
between matching and empirical discrepancy explicit. In Section 3, we use
these connections to obtain large and moderate deviation principles for the
sequences T 1

n and T∞n . We conclude with a conjecture which, if true, leads
to explicit formulae for the corresponding rate functions.

2 The Monge-Kantorovich Problem

In 1781, Monge [10] formulated the following problem:

Split two equally large volumes into infinitely small particles and
then associate them with each other so that the sum of products
of these paths of the particles to a volume is least. Along what
paths must the particles be transported and what is the smallest
transportation cost?

This problem was first made precise and studied by Kantorovich [6, 7].
Suppose that µ and ν are Borel probability measures on a compact metric
space (E, d) and Π(µ, ν) is the space of all Borel probability measures π on
E ×E with fixed marginals µ(·) = π(· ×E) and ν = π(E × ·). Kantorovich
defined the metric

ρ1(µ, ν) = inf
{∫

E×E
d(x, y)π(dx, dy) : π ∈ Π(µ, ν)

}
(2.4)

and proved that
ρ1(µ, ν) = ‖µ− ν‖F , (2.5)

3



where ‖ · ‖F is defined by (1.3). The properties of ρ1 and its relatives have
since been studied extensively: see Rachev [11] for a monumental survey
of the literature. In particular, it was shown by Kantorovich and Rubin-
shtein [8] that ρ1 metrises the weak topology on M1(E), the space of prob-
ability measures on E. A related metric, which is also associated with the
Monge-Kantorovich problem, is defined by

ρ∞(µ, ν) = inf
π∈Π(µ,ν)}

sup{supp π ◦ d−1}, (2.6)

where supp π ◦ d−1 denotes the support of the probability measure π ◦ d−1,
which is bounded since E is compact. Equivalently,

ρ∞(µ, ν) = inf{ε > 0 : µ(A) ≤ ν(Aε), A ∈ B(E)}, (2.7)

where Aε = {x : d(x,A) < ε} and B(E) is the Borel σ-algebra on E. The
topology generated by ρ∞ is finer than the weak topology. However, it can
be shown (see Lemma 3.3 below) that, in the special case where E is the
unit square in R2 and λ is Lebesgue measure on E, the function ρ∞(·, λ) is
weakly continuous.

The matching problem is related to the Monge-Kantorovich problem by the
following lemma.

Lemma 2.1 For x, y ∈ En, set ln = 1
n

∑n
i=1 δxi and mn = 1

n

∑n
i=1 δyi. We

have the following identities:

ρ1(ln,mn) = inf
σ∈Sn

1
n

n∑
i=1

d(xi, yσ(i))

ρ∞(ln,mn) = inf
σ∈Sn

max
i≤n

d(xi, yσ(i)).

Proof. For σ ∈ Sn, set

πσ =
1
n

n∑
i=1

δ(xi,yσ(i)).

We will argue that any π ∈ Π(ln,mn) can be written as

π =
∑
σ∈Sn

βσπσ,
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for some collection of non-negative numbers βσ with∑
σ∈Sn

βσ = 1.

From this it would follow that

ρ1(ln,mn) = inf
{∫

E×E
d(x, y)π(dx, dy) : π ∈ Π(ln,mn)

}
= inf

{ ∑
σ∈Sn

βσ

∫
E2

d(x, y)πσ(dx, dy) : βσ > 0,
∑
σ∈Sn

βσ = 1
}

= inf
σ∈Sn

∫
E2

d(x, y)πσ(dx, dy)

= inf
σ∈Sn

1
n

n∑
i=1

d(xi, yσ(i))

and

ρ∞(ln,mn) = inf
{
sup

{
supp π ◦ d−1 : π ∈ Π(ln,mn)

}}
= inf

{
sup

{
supp

( ∑
σ∈Sn

βσπσ ◦ d−1 : βσ > 0,
∑
σ∈Sn

βσ = 1
)}}

= inf
σ∈Sn

sup {supp πσ ◦ d−1}

= inf
σ∈Sn

max
i≤n

d(xi, yσ(i))

as required. The above claim is fact an immediate consequence of the
Birkoff-von Neumann theorem (or the Krein-Milman theorem, of which it
is a corollary), which states that any doubly stochastic matrix can be writ-
ten as a convex combination of permutation matrices (see, for example, [2,
Theorem 2.1.6]). (Recall that a non-negative matrix is doubly stochastic if
each of its rows and columns sum to one; a permutation matrix of order n is
a matrix of the form 1{σ(i) = j}, for some σ ∈ Sn.) To see this, note that
if π ∈ Π(ln,mn) then

π =
1
n

n∑
i=1

aijδ(xi,yj)

where A = (aij) is a doubly stochastic matrix. By the Birkoff-von Neumann
theorem, there exist non-negative constants βσ with

∑
σ∈Sn

βσ = 1, such
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that
aij =

∑
σ∈Sn

βσ1σ(i)=j

for all i, j ≤ n. It follows that

π =
∑
σ∈Sn

βσπσ,

as claimed. �

We thus have the following identities, where E is now taken to be the unit
square:

T 1
n = nρ1(Ln,Mn) = n‖Ln −Mn‖F

and
T∞n = ρ∞(Ln,Mn).

The first of these identities is the underlying force behind the work of Ta-
lagrand and Shor. In the next section we will use (more general versions
of) these identities to obtain large and moderate deviation results for the
matching problem.

3 Large and moderate deviations results

Let (Xn)n≥1 be a sequence of random variables defined on a probability space
(Ω,F , P ), with values in a Hausdorff topological vector space E equipped
with the Borel σ-algebra E . Denote by M1(E) (resp. Mb(E)) the space of
probability measures (resp., finite signed measures) on (E, E). Let µn denote
the law of Xn. We say that the sequence Xn (equivalently, µn) satisfies the
large deviation principle (LDP) with rate function I, if for all B ∈ E ,

− inf
x∈B◦

I(x) ≤ lim inf
n

1
n

log µn(B) ≤ lim sup
n

1
n

log µn(B) ≤ − inf
x∈B̄

I(x).

Here B◦ and B̄ denote the interior and closure of B, respectively.

Let (an)n≥1 be an increasing, positive sequence such that

an →∞ and
an√
n
→ 0.
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We say the the sequence Xn satisfies the moderate deviation principle (MDP)
with rate function I and speed a−2

n , if for all B ∈ E ,

− inf
x∈B◦

I(x) ≤ lim inf
n

1
a2

n

log P

(√
n

an
Xn ∈ B

)
≤ lim sup

n

1
a2

n

log P

(√
n

an
Xn ∈ B

)
≤ − inf

x∈B̄
I(x).

It doesn’t complicate matters to consider an abstraction of the matching
problem, so we shall do just that. Let Xi and Yi be independent random
variables taking values in a compact metric space (E, d) with common law
µ, and consider the random quantities defined by

T 1
n = inf

σ∈Sn

n∑
i=1

d(Xi, Yσ(i))

and
T∞n = inf

σ∈Sn

max
i≤n

d(Xi, Yσ(i)).

Then
1
n

T 1
n = ρ1(Ln,Mn)

and
T∞n = ρ∞(Ln,Mn),

where ρ1 and ρ∞ are the metrics on M1(E) defined by (2.4) and (2.6).
Since E is compact, ρ1 induces the weak topology on M1(E). Note that the
compactness of E is required. To see this, let X have a Pareto distribution
on R with infinite mean and let Xn have the truncated distribution, namely
that of X ∧ n. Clearly, Xn converges weakly to X but, for any coupling
(X, Xn), we have

E[X −Xn] ≥ E[(X −Xn)1(X > n)] = E[X1(X > n)]− n = ∞,

for all n. Hence ρ1(X, Xn) is not even finite, for any n.

Since ρ1 induces the weak topology on M1(E), the following is an immedi-
ate consequence of Sanov’s theorem and the contraction principle (taking
products is continuous in the weak topology).
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Theorem 3.1 The sequence P (T 1
n/n ∈ ·) satisfies the LDP in R with rate

function
I1(x) = inf{H(ν1|µ) + H(ν2|µ) : ρ1(ν1, ν2) = x}.

Here, for probability measures µ and ν on E, H(ν|µ) denotes the relative
entropy or Kullback-Leibler divergence of ν with respect to µ. It is defined
as

∫
E dν log dν

dµ if ν is absolutely continuous with respect to µ, and is defined
to be infinite otherwise.

Due to the highly discontinuous nature of ρ∞, we can only conjecture that
the sequence P (T∞n ∈ ·) also satisfies the LDP, with rate function given by

I∞(x) = inf{H(ν1|µ) + H(ν2|µ) : ρ∞(ν1, ν2) = x}.

We can, however, deduce the following ‘grid-matching’ version.

Theorem 3.2 If E is the unit square and the points Xi are generated ac-
cording to Lebesgue measure λ on E, then the sequence P (ρ∞(Ln, λ) ∈ ·)
satisfies the LDP in R with rate function

I∞(x) = inf{H(ν|λ) : ρ∞(ν, λ) = x}.

This is a simple consequence of Sanov’s theorem, the contraction principle,
and the next lemma.

Lemma 3.3 If E is the unit square and λ is Lebesgue measure on E, then
the function ρ∞(·, λ) is weakly continuous.

Proof. Let νn be a sequence of probability measures on E converging weakly
to ν. Define

d = ρ∞(λ, ν), d1 = lim inf
n→∞

ρ∞(λ, νn), d2 = lim sup
n→∞

ρ∞(λ, νn).

Then we can find a subsequence νn(k) such that ρ∞(λ, νn(k)) → d1 as k →∞.
In other words, given ε > 0, there is a K such that ρ∞(λ, νn(k)) < d1 + ε for
all k > K. Hence,

λ(A) ≤ νn(k)(A
d1+ε) ∀A ∈ B(E), k > K.
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Now, using the fact that the νn(k) converge weakly to ν, we have

λ(A) ≤ lim sup
k→∞

νn(k)(Ad1+ε) ≤ ν(Ad1+ε) ≤ ν(Ad1+2ε) ∀A ∈ B(E),

and so ρ∞(λ, ν) ≤ d1 + 2ε. Since ε > 0 is arbitrary, we obtain

ρ∞(λ, ν) ≤ d1 = lim inf
n→∞

ρ∞(λ, νn),

i.e., ρ∞(λ, ·) is lower semicontinuous.

To show upper semicontinuity, we shall use the fact that the weak topology
is metrised by Levy’s metric,

D(µ, ν) = inf{δ : µ(F ) ≤ ν(F δ) + δ ∀ closed F ⊆ E}.

Recall that λ(A) ≤ ν(Ad+ε) for any A ∈ B(E) and any ε > 0, where d =
ρ∞(λ, ν). Since νn converges weakly to ν, it follows that for any given ε > 0,
there is an N such that

λ(Aε) ≤ ν(Ad+2ε) ≤ νn(Ad+2ε+ε3) + ε3 ∀ A ∈ B(E), n > N.

Suppose first that Aε isn’t the unit square, E. Then there is a point x in E

such that B(x, ε/2), the circle of radius ε/2 centred at x, is contained in Aε

but doesn’t intersect A. Since λ is Lebesgue measure, it follows that

λ(Aε) ≥ λ
(
A ∪B

(
x,

ε

2
))

= λ(A) + λ
(
B

(
x,

ε

2
))

= λ(A) +
π

4
ε2.

Thus, for ε sufficiently small,

λ(A) ≤ νn(Ad+3ε) ∀ A ∈ B(E), n > N.

The above inequality holds trivially, for all n, if Aε = E since λ(A) ≤ 1 =
νn(E) by the fact that λ and νn are probability measures on E. Thus, we
have shown that ρ∞(λ, νn) ≤ d + 3ε for all n > N , where d = ρ∞(λ, ν). But
ε > 0 is arbitrary, so we conclude that

ρ∞(λ, ν) ≥ lim sup
n→∞

ρ∞(λ, νn),
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i.e., ρ∞(λ, ·) is upper semicontinuous. This completes the proof of the
lemma. �

We are not able to explicitly solve the optimisation problem in Theorem
3.1 but we characterise the solution in the theorem below, following some
definitions. Given a compact metric space (E, d) and a Borel probability
measure µ on it, we denote by F0 the set of Lipschitz functions f on E, with
Lipschitz constant 1, such that

∫
E fdµ = 0. For θ ∈ R, we define

Λf (θ) = log Eµ [eθf ] = log
∫

E
eθf(x)dµ(x), Lf (θ) = Λf (θ)+Λf (−θ), (3.8)

and for x ∈ R, we set

Λ∗f (x) = sup
θ∈R

θx− Λf (θ), L∗f (x) = sup
θ∈R

θx− Lf (θ).

Remark 3.4 It is easily seen to be a consequence of the fact that E is
compact and f Lipschitz that Λf (θ) and Lf (θ) are finite and continuously
differentiable at all θ ∈ R, with

Λ′f (θ) =

∫
E f(x)eθf(x)dµ(x)∫

E eθf(x)dµ(x)
=

∫
E

f(x)eθf(x)−Λf (θ)dµ(x), (3.9)

L′f (θ) = Λ′f (θ)− Λ′f (−θ). (3.10)

Moreover, Λ′f (0) = L′f (0) = 0 by the assumption that f ∈ F0.

Theorem 3.5 In the context of Theorem 3.1,

I1(x) =
{

inff∈F0 L∗f (x), if x ≥ 0,
+∞, if x < 0.

(3.11)

Note that if x < 0, then there do not exist probability measures ν1 and
ν2 on (E, d) such that ‖ν1 − ν2‖F = x, since ‖ · ‖F is non-negative. It is
now immediate from the definition of I1 in Theorem 3.1 that I1(x) = ∞.
Next, if x = 0, the infimum in the definition of I1 in Theorem 3.1 is zero
and is achieved by ν1 = ν2 = µ (as the infimum clearly cannot be negative).
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Moreover, it can easily be verified from the definitions that L∗f (0) = 0 for
any f ∈ F0, since L′f (0) = 0 (see Remark 3.4) and Lf (0) = 0. Thus,
I1(0) = inff∈F0 L∗f (0) = 0. Hence, it only remains to prove the theorem in
the case x > 0, which we do following the next two lemmas.

Lemma 3.6 For each x > 0, either I1(x) = ∞ or there are Borel probability
measures ν1, ν2 on (E, d) such that the infimum in the definition of I1 in
Theorem 3.1 is achieved at (ν1, ν2).

Proof. Let M1(E) denote the set of Borel probability measures on E,
equipped with the weak topology. M1(E) is compact since E was assumed
to be compact and so M1(E)×M1(E) is compact in the product topology.
(ν1, ν2) → ρ1(ν1, ν2) is continuous on M1(E)×M1(E) since ρ1 metrises the
weak topology on M1(E). Hence,

{(ν1, ν2) ∈ M1(E)×M1(E) : ‖ν1 − ν2‖F = x},

being a closed subset of a compact set, is either empty or compact. Since
H(·|µ) is lower semicontinuous in the weak topology (see, for example, [5,
Lemma 1.4.3]), it follows that the infimum in the definition of I1(x) in
Theorem 3.1 is either infinite or is achieved by some ν1, ν2 ∈ M1(E). �

Lemma 3.7 Let x > 0, and let ν1, ν2 be probability measures on E such that
ρ1(ν1, ν2) = x. Then, there is an f ∈ F0 such that ρ1(ν1, ν2) = (ν1− ν2)(f).

Proof. Since ν1, ν2 are probability distributions, (ν1 − ν2)(f) is unchanged
by adding a constant to f . Hence, by (2.5),

ρ1(ν1, ν2) = sup
f∈F

(ν1 − ν2)(f) = sup
f∈F0

(ν1 − ν2)(f).

But F0 is a compact subset of L∞(E) by the Arzela-Ascoli theorem, since
it is closed, bounded (due to the compactness of E) and equicontinuous.
Moreover, f → (ν1− ν2)(f) is continuous on L∞(E). Hence, the supremum
in the equation above is attained at some f ∈ F0, as claimed. �
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Proof of Theorem 3.5. Recall that we need only prove the theorem for
x > 0. We first show that I1(x) ≥ inff∈F0L

∗
f (x) for all x > 0. If I1(x) = ∞,

then the inequality holds trivially. Hence, suppose that I1(x) is finite. Then,
by Lemma 3.6, the infimum in the definition of I1(x) in Theorem 3.1 is
attained by some ν1, ν2 ∈ M1(E) which are absolutely continuous with
respect to µ. Furthermore, by Lemma 3.7, there is an f ∈ F0 such that

ρ1(ν1, ν2) = (ν1 − ν2)(f) = x. (3.12)

Fix one such f . Since ν1, ν2 � µ, the last equality in (3.12) implies that
ess-sup f − ess-sup (−f) ≥ x, where the essential suprema are with respect
to µ.

Let Λf and Lf be defined as in (3.8), with f ∈ F0 as above. Then, L′f (0) = 0
as noted in Remark 3.4, and

lim
η→∞

L′f (η) = lim
η→∞

Λ′f (η)− Λ′f (−η) = ess-sup f − ess-sup (−f) ≥ x.

Hence, given 0 < ε < x, it follows from the continuity of L′f that we can
find a θ ∈ R+ such that

L′f (θ) = x− ε, and so L∗f (x− ε) = θ(x− ε)− Lf (θ). (3.13)

For θ as above, define λθ and λ−θ by

dλθ

dµ
(z) = eθf(z)−Λf (θ),

dλ−θ

dµ
(z) = e−θf(z)−Λf (−θ). (3.14)

Clearly, λθ and λ−θ are probability measures on (E, d), ν1 � λθ and ν2 �
λ−θ since λθ and λ−θ are equivalent to µ. Thus, by the definition of ν1 and
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ν2,

I1(x) = H(ν1|µ) + H(ν2|µ) =
∫

E
dν1 log

dν1

dµ
+

∫
E

dν2 log
dν2

dµ

=
∫

E
dν1 log

dν1

dλθ
+

∫
E

dν2 log
dν2

dλ−θ
+

∫
E

dν1 log
dλθ

dµ
+

∫
E

dν2 log
dλ−θ

dµ

= H(ν1|λθ) + H(ν2|λ−θ) +
∫

E
(θf(z)− Λf (θ))dν1(z) +

∫
E
(−θf(z)− Λf (−θ))dν2(z)

≥ θ(ν1 − ν2)(f)− Λf (θ)− Λf (−θ) = θx− Lf (θ)

≥ L∗f (x− ε).

Here, the first inequality follows from the non-negativity of relative entropy
and the fact that ν1 and ν2 are probability measures, the following equality
from (3.12), and the last inequality from (3.13) and the non-negativity of
θ and ε. Since the above holds for arbitrarily small ε > 0, it follows from
the lower semicontinuity of L∗f (it is the supremum of continuous functions)
that L∗f (x) ≤ I(x). Hence, also

inf
g∈F0

L∗g(x) ≤ I1(x). (3.15)

Next, we prove the converse inequality, i.e., that L∗f (x) ≥ I1(x) for all f ∈
F0. If f is such that ess-sup f − ess-sup (−f) < x, then it can readily
be verified that L∗f (x) = ∞, and so the claimed inequality holds trivially.
Suppose next that f ∈ F0 is such that ess-sup f − ess-sup (−f) ≥ x. We
proceed as before: for arbitrary ε ∈ (0, x), we choose θ as in (3.13) and
define λθ and λ−θ as in (3.14). Then,

(λθ − λ−θ)(f) = e−Λf (θ)

∫
E

feθfdµ− e−Λf (−θ)

∫
E

fe−θfdµ

= Λ′f (θ)− Λ′f (−θ) = L′f (θ) = x− ε. (3.16)

Hence, ρ1(λθ, λ−θ) ≥ x−ε, and α := (x−ε)/ρ1(λθ, λ−θ) ∈ (0, 1]. (It is strictly
bigger than zero because we assumed that ε < x, and ρ1(λθ, λ−θ) is finite by
the assumption that E is compact.) Now, if we define λ̃θ = αλθ + (1− α)µ
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and λ̃−θ = αλ−θ + (1− α)µ, then it is easy to see that ρ1(λ̃θ, λ̃−θ) = x− ε.
Moreover, by the convexity of H(·|µ), H(λ̃θ|µ) ≤ H(λθ|µ) and H(λ̃−θ|µ) ≤
H(λ−θ|µ). Thus, we have

I1(x− ε) ≤ H(λ̃θ|µ) + H(λ̃−θ|µ) ≤ H(λθ|µ) + H(λ−θ|µ)

=
∫

E
(θf − Λf (θ))dλθ +

∫
E
(−θf − Λf (−θ))dλ−θ

= θ(λθ − λ−θ)(f)− Λf (θ)− Λf (−θ)

= θ(x− ε)− Lf (θ) = L∗f (x− ε). (3.17)

Next, we note that L∗f (·) is non-decreasing on R+. This is immediate from
the fact that L∗f is non-negative (since Lf (0) = 0) and convex (since it is
the supremum of linear functions), and that L∗f (0) = 0 (since L′f (0) = 0).
Therefore, we obtain from (3.17) that I1(x − ε) ≤ L∗f (x) for all ε ∈ (0, x).
But I1 is lower semicontinuous since it is a rate function. Hence, letting
ε decrease to zero, we get I1(x) ≤ L∗f (x) for all f ∈ F0. Combining this
with the converse inequality established in (3.15) completes the proof of the
theorem. �

It is not as straightforward to obtain moderate deviation principles from
Sanov’s theorem because ρ1(·, ·) and, in the case where E is the unit square
and the points Xi, Yi are generated according to Lebesgue measure λ on E,
ρ∞(·, λ), are not continuous functions on the space of signed measures. We
shall use results of Wu [14], who derives conditions for the MDP to hold
uniformly over a class of functions, to obtain an MDP for T 1

n/n. The MDP
for ρ∞(Ln, λ) remains an open problem.

Denote by F̂ the space of Lipschitz functions f on the unit square, with
Lipschitz constant 1 and such that 0 ≤ f ≤ 2. Let d2(f, g) = (

∫
(f −

g)2dλ)1/2 denote the L2 metric on F̂ , where λ is Lebesgue measure on the
unit square. It is not hard to see that (F̂ , d2) is totally bounded. Denote
by `∞(F̂) the space of bounded real functions on F̂ , and equip it with the
sup norm. Every signed measure ν ∈ Mb(E) corresponds to an element
νF̂ ∈ `∞(F̂) given by νF̂ (f) = ν(f) :=

∫
fdν for all f ∈ F̂ .
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It is suggested by (1.1), (2.5) and the identity T 1
n/n = ρ1(Ln,Mn), and has

been shown by Talagrand [13, Theorem 4.1] that, for any positive sequence
an, we have

an√
log n

→∞ ⇒
√

n

an
ρ1(Ln, λ)

p−→ 0 ⇒
√

n

an
(Ln − λ)F̂

p−→ 0, (3.18)

where
p−→ denotes convergence in probability and λ denotes Lebesgue mea-

sure on the unit square. Now the following theorem is an easy consequence
of [14, Theorem 2].

Theorem 3.8 For any positive sequence an such that

an√
n
→ 0 and

an√
log n

→∞,

the sequence P ( T 1
n√

nan
∈ ·) satisfies the MDP in R with speed a−2

n and rate
function

J1(x) = inf
{

1
2

∫ [
(
dν1

dλ
)2 + (

dν2

dλ
)2

]
dλ : ν1(E) = ν2(E) = 0, ν1, ν2 � λ, ρ1(ν1, ν2) = x

}
.

The solution to the above variational problem is as follows.

Lemma 3.9 In the context of Theorem 3.8,

J1(x) =
x2

4 supf∈F0

∫
E f2dλ

.

Proof. Let the supremum in the denominator above be attained at f ∈ F0

(recall that F0 is a compact subset of L∞(E) and that g →
∫
E g2dλ is

continuous on L∞(E)). Fix x > 0 and let the signed measures λ1, λ2 on E

be given by

dλ1

dλ
(z) =

xf(z)
2

∫
f2dλ

,
dλ2

dλ
(z) =

−xf(z)
2

∫
f2dλ

.

It follows from the definition of F0 that λ1(E) = λ2(E) = 0. We also have

(λ1 − λ2)(f) =
2x

∫
f2dλ

2
∫

f2dλ
= x,
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and so ρ1(λ1, λ2) = ‖λ1 − λ2‖F ≥ x. Also,

1
2

∫ [
(
dλ1

dλ
)2 + (

dλ2

dλ
)2

]
dλ =

x2

2
2

∫
f2dλ

(2
∫

f2dλ)2
=

x2

4
∫

f2dλ
.

Now, if ρ1(λ1, λ2) = y > x, then defining λ̃i = xλi/y, i = 1, 2, we have
ρ1(λ̃1, λ̃2) = x, and

1
2

∫ [
(
dλ̃1

dλ
)2 + (

dλ̃2

dλ
)2

]
dλ =

x2

2y2

∫ [
(
dλ1

dλ
)2 + (

dλ2

dλ
)2

]
dλ

<
1
2

∫ [
(
dλ1

dλ
)2 + (

dλ2

dλ
)2

]
dλ.

Thus, we have from Theorem 3.8 and the definition of f that

J1(x) ≤ x2

4
∫

f2dλ
=

x2

4 supg∈F0

∫
g2dλ

. (3.19)

Next, suppose ν1, ν2 belong to the set over which the infimum in the defini-
tion of J1 is taken. Then, ν1, ν2 � λ. Let g1 = dν1/dλ and g2 = dν2/dλ be
the corresponding density functions. We have for arbitrary f ∈ F0 that[

(ν1 − ν2)(f)
]2 =

(∫
f(g1 − g2)dλ

)2
≤

∫
f2dλ

∫
(g1 − g2)2dλ

≤ 2
∫

f2dλ

∫
(g2

1 + g2
2)dλ,

where the first inequality is the Cauchy-Schwarz inequality, and the second
follows from the fact that 2|g1g2| ≤ g2

1 + g2
2 pointwise. Since this inequality

holds for all f ∈ F0, taking the supremum over F0 yields

ρ1(ν1, ν2)2 ≤ 2 sup
f∈F0

∫
f2dλ

∫ [
(
dν1

dλ
)2 + (

dν2

dλ
)2

]
dλ.

But ρ1(ν1, ν2) = x. Since the above inequality holds for all ν1, ν2 in the set
over which the infimum in the definition of J1 is taken, it follows that

J1(x) ≥ x2

4 supf∈F0

∫
f2dλ

. (3.20)

Combining this with (3.19) yields the claim of the lemma. �
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4 A conjecture

Consider the case where E is the unit square, centred at the origin. By
Theorem 3.9, the rate function governing the MDP for T 1

n is given by J1(x) =
x2/4c, where

c = sup
f∈F0

∫
E

f2dλ. (4.21)

We conjecture that, in (4.21), the supremum is achieved at f = ϕ ∈ F0,
where

ϕ(x, y) =
x + y√

2
, −1

2
≤ x, y ≤ 1

2
.

A simple calculation yields that
∫
E ϕ2dλ = 1/12 and so our conjecture is

that
J1(x) = 3x2.

Clearly, taking f = ϕ yields the upper bound J1(x) ≤ 3x2; an easy lower
bound is obtained by noting that, for any g ∈ F0,∫

x∈E
g(x)2dλ(x) =

1
2

∫
x,y∈E

[g(x)− g(y)]2dλ(x)dλ(y)

≤ 1
2

∫
x,y∈E

‖x− y‖2dλ(x)dλ(y) =
1
6
,

which implies J1(x) ≥ 3x2/2.

It is also possible in this case to compute the rate function I1 governing
the LDP, but again we need to base this on a conjecture. This time, the
conjecture is that, for all θ ∈ R, the supremum of Lf (θ) over f ∈ F0 is
achieved at f = ϕ. If this is true, then

I1(x) = L∗ϕ(x)

for x > 0. To see this, note first that I1 ≤ L∗ϕ, by Theorem 3.5. On the
other hand, assuming the above conjecture, we have

I1(x) = inf
f∈F0

sup
θ∈R

θx− Lf (θ)

≥ sup
θ∈R

inf
f∈F0

θx− Lf (θ)

= sup
θ∈R

θx− Lϕ(θ),
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as claimed. It is an elementary calculation to show that

Lϕ(θ) = 2 log
[

4
θ2

(
cosh

(
θ

4
√

2

)
− 1

)]
.

Note that both of the above conjectures are true if:

Conjecture. Let E be the unit square centred at the origin. For all positive
integers k, the supremum of the (2k)th cumulant Λ(2k)

f (0) over f ∈ F0 is
achieved at f = ϕ.
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