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An inverse of Sanov’s theorem
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Abstract

Let Xk be a sequence of i.i.d. random variables taking values in a �nite set, and consider the problem of estimating
the law of X1 in a Bayesian framework. We prove that the sequence of posterior distributions satis�es a large deviation
principle, and give an explicit expression for the rate function. As an application, we obtain an asymptotic formula for the
predictive probability of ruin in the classical gambler’s ruin problem. c© 1999 Elsevier Science B.V. All rights reserved
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1. Introduction and preliminaries

Let X be a Hausdor� topological space with Borel �-algebra B, and let �n be a sequence of probability
measures on (X;B). A rate function is a non-negative lower semicontinuous function on X. We say that the
sequence �n satis�es the large deviation principle (LDP) with rate function I , if for all B ∈ B,

− inf
x∈B◦

I(x)6 lim inf
n

1
n
log �n(B)6 lim sup

n

1
n
log �n(B)6− inf

x∈ �B
I(x):

Here B◦ and B denote the interior and closure of B, respectively.
Let 
 be a �nite set and denote by M1(
) the space of probability measures on 
. Consider a sequence

of independent random variables Xk taking values in 
, with common law �∈M1(
). Denote by Ln the
empirical measure corresponding to the �rst n observations:

Ln =
1
n

n∑
k=1

�Xk ;

where �Xk denotes unit mass at Xk . We denote the law of Ln by L(Ln). For � ∈ M1(
) de�ne its relative
entropy (relative to �) by

H (�|�) =
{ ∫



d�
d� log

d�
d� d� �� �;

∞ otherwise:
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The statement of Sanov’s theorem is that the sequence L(Ln) satis�es the LDP in M1(
) with rate function
H (· |�).
In this paper, we present an inverse of this result, which arises naturally in a Bayesian setting. The underlying

distribution (of the Xk ’s) is unknown, and has a prior distribution � ∈ M1(M1(
)). The posterior distribution,
given the �rst n observations, is a function of the empirical measure Ln and will be denoted by �n(Ln). We
prove that, on the set {Ln → �}, for any �xed � in the support of the prior, the sequence �n(Ln) satis�es
the LDP in M1(
) with rate function given by H (�| ·) on the support of the prior (otherwise it is in�nite).
Note that the roles played by the arguments of the relative entropy function are interchanged. This result can
be understood intuitively as follows: in Sanov’s theorem we ask how likely the empirical distribution is to
be close to �, given that the true distribution is �, whereas in the Bayesian context we ask how likely it is
that the true distribution is close to �, given that the empirical distribution is close to �. We regard these
questions as natural inverses of each other.
As an application, we obtain an asymptotic formula for the predictive probability of ruin in the classical

gambler’s ruin problem.
Admittedly, the assumption that 
 is �nite is very strong. However, it is the only case where the result can

be stated without making additional assumptions about the prior. To see that this is a delicate issue, note
that, since H (�|�) = 0, the LDP implies consistency of the posterior distribution: it was shown by Freedman
(1963) that Bayes estimates can be inconsistent even on countable 
 and even when the “true” distribution
is in the support of the prior; moreover, su�cient conditions for consistency which exist in the literature are
quite disparate and in general far from being necessary. The problem of extending our result would seem to
be an interesting (and formidable!) challenge for future research. We have recently extended the result to the
case where 
 is a compact metric space, under the condition that the prior is of Dirichlet form (Ganesh and
O’Connell, 1998).
There is considerable literature on the asymptotic behaviour of Bayes posteriors; see, for example, Le Cam

(1953,1957); Freedman (1963); Lindley (1965); Schwartz (1965); Johnson (1967,1970); Brenner et al. (1983);
Chen (1985); Diaconis and Freedman (1986) and Fu and Kass (1988). Freedman (1963) and Diaconis and
Freedman (1986) studied conditions under which the Bayes estimate (the mean of the posterior distribution)
is consistent. Le Cam, Freedman, Brenner et al. and Chen establish asymptotic normality of the posterior
distribution under di�erent conditions on the parameter space and the prior. Schwartz and Johnson study
asymptotic expansions of the posterior distribution in powers of n−1=2, having a normal distribution as the
leading term. Fu and Kass establish an LDP for the posterior distribution of the parameter in a one-dimensional
parametric family, under certain regularity conditions.

2. The LDP

Let 
 be a �nite set, and let M1(
) denote the space of probability measures on 
. Suppose X1, X2; : : :
are i.i.d. 
-valued random variables.
Let � ∈ M1(M1(
)) denote the prior distribution on the space M1(
), with support denoted by supp�.

For each n, set

Mn
1(
) =

{
1
n

n∑
i=1

�xi : x ∈ 
n
}
:

De�ne a mapping �n :Mn
1(
)→ M1(M1(
)) by its Radon–Nikodym derivative on the support of �:

d�n(�n)
d�

(�) =

∏
x∈
 �(x)

n�n(x)∫
M1(
)

∏
x∈
 �(x)n�n(x)�(d�)

; (1)
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if the denominator is non-zero; �n is unde�ned at �n if the denominator is zero. When de�ned, �n(�n) denotes
the posterior distribution, conditional on the observations X1; : : : ; Xn having empirical distribution �n ∈ Mn

1(
).
(This follows immediately from Bayes formula; there are no measurability concerns here since 
 is �nite.)

Theorem 1. Suppose x ∈ 
N is such that the sequence �n=
∑n

i=1 �xi =n converges weakly to � ∈ supp� and
that �(x)= 0 implies that �n(x)= 0 for all n. Then the sequence of laws �n(�n) satis�es a large deviation
principle (LDP) with good rate function

I(�) =

{
H (�|�) if � ∈ supp �;
∞ else:

The rate function I(·) is convex if supp� is convex.

Proof. Observe that

1
n
log

∏
x∈


�(x)n�n(x) =
∑
x∈


�n(x) log �n(x)−
∑
x∈


�n(x) log
�n(x)
�(x)

=−H (�n)− H (�n|�)6− H (�n):
Here, H (�n) =

∑
x∈
 �n(x) log �n(x) denotes the entropy of �n. The last inequality follows from the fact that

relative entropy is non-negative. It follows, since � is a probability measure on M1(
), that∫
M1(
)

∏
x∈


�(x)n�n(x)�(d�)6exp(−nH (�n)):

Thus,

lim sup
n→∞

1
n
log

∫
M1(
)

∏
x∈


�(x)n�n(x)�(d�)6 lim sup
n→∞

−H (�n) =−H (�); (2)

here we are using the fact that H (·) is continuous.
Next, since �n converges to � ∈ supp�, we have that for all �¿ 0, �(B(�; �))¿ 0 and �n ∈ B(�; �) for all

n su�ciently large. (Here, B(�; �) denotes the set of probability distributions on 
 that are within � of � in
total variation distance – note that this generates the weak topology since 
 is �nite.) Therefore,

1
n
log

∫
M1(
)

∏
x∈


�(x)n�n(x)�(d�)¿
1
n
log

∫
B(�; �)

∏
x∈


�(x)n�n(x)�(d�)

¿
1
n
log �(B(�; �)) +

∑
x∈


�n(x)log �n(x)− sup
�∈B(�;�)

∑
x∈
:�(x)¿0

�n(x)log
�n(x)
�(x)

:

To obtain the last inequality, we have used the assumption that, if �(x)=0, then �n(x)=0 for all n. We also
use the convention that 0 log 0=0. Since �(B(�; �))¿ 0, it follows from the above, again using the continuity
of H (·), that

lim inf
n→∞

1
n
log

∫
M1(
)

∏
x∈


�(x)n�n(x)�(d�)

¿− H (�)− sup
�;�∈B(�;�)

∑
x∈
:�(x)¿0

�(x)log
�(x)
�(x)

: (3)
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Letting �→ 0, we get from (2) and(3) that

lim
n→∞

1
n
log

∫
M1(
)

∏
x∈


�(x)n�n(x)�(d�) =−H (�): (4)

LD upper bound: Let F be an arbitrary closed subset of M1(
). If �(F) = 0, then �n(�n)(F) = 0 for all
n and the LD upper bound,

lim sup
n→∞

1
n
log �n(�n)(F)6− inf

�∈F
I(�);

holds trivially. Otherwise, if �(F)¿ 0, observe from (1) and (4) that

lim sup
n→∞

1
n
log �n(�n)(F)− H (�) = lim sup

n→∞
1
n
log

∫
F
�(x)n�n(x)�(d�)

6 lim sup
n→∞

1
n
log �(F) + lim sup

n→∞
sup

�∈F∩supp �

∑
x∈


�n(x)log �(x)

= lim sup
n→∞

sup
�∈F∩supp �

[− H (�n)− H (�n|�)]

6 sup
�∈B(�; �)

sup
�∈F∩supp �

[− H (�)− H (�|�)] ∀�¿ 0;

where the last inequality is because �n converges to �. Letting � → 0, we get from the continuity of H (·)
and H (·|·) that

lim sup
n→∞

1
n
log �n(�n)(F)6− inf

�∈F∩supp �
H (�|�) =− inf

�∈F
I(�); (5)

where the last equality follows from the de�nition of I in the statement of the theorem. This completes the
proof of the large deviations upper bound.

LD lower bound: Fix � ∈ supp�, and let B(�; �) denote the set of probability distributions on 
 that are
within � of � in total variation. Then, �(B(�; �))¿ 0 for any �¿ 0. Using (1) and (4) we thus have, for all
� ∈ (0; �),

lim inf
n→∞

1
n
log �n(�n)(B(�; �))− H (�)

¿ lim inf
n→∞

1
n
log

∫
B(�;�)

�(x)n�n(x)�(d�)

¿ lim inf
n→∞

1
n
log �(B(�; �)) + lim inf

n→∞ inf
�∈B(�;�)

∑
x∈


�n(x)log �(x)

¿ inf
�∈B(�; �)

inf
�∈B(�; �)

[−H (�)− H (�|�)]:

Letting �→ 0, we have by the continuity of H (·) and H (·|·) that
lim inf
n→∞

1
n
log �n(�n)(B(�; �))¿− H (�|�) =−I(�); (6)

where the last equality is because we took � to be in supp�.
Let G be an arbitrary open subset of M1(
). If G ∩ supp� is empty, then, by the de�nition of I in the

statement of the theorem, inf �∈G I(�) =∞. Therefore, the large deviations lower bound,
lim inf
n→∞

1
n
log �n(�n)(G)¿− inf

�∈G
I(�);
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holds trivially. On the other hand, if G ∩ supp� is not empty, then we can pick � ∈ G such that I(�) is
arbitrarily close to inf �∈G I(�), and �¿ 0 such that B(�; �)⊆G. So �n(�n)(G)¿�n(�n)(B(�; �)) for all n, and
it follows from (6) that

lim inf
n→∞

1
n
log �n(�n)(G)¿− inf

�∈G
I(�):

This completes the proof of the large deviations lower bound, and of the theorem.

3. Application to the gambler’s ruin problem

Suppose now that 
 is a �nite subset of R. As before, Xk is a sequence of i.i.d. random variables with
common law � ∈ M1(
), and we are interested in level-crossing probabilities for the random walk Sn =
X1 + · · · + Xn. For Q¿ 0, denote by R(Q; �) the probability that the walk ever exceeds the level Q. If a
gambler has initial capital Q, and loses amount Xk on the kth bet, then R(Q; �) is the probability of ultimate
ruin. If the underlying distribution � is unknown, the gambler may wish to assess this probability based on
experience: this leads to a predictive probability of ruin, given by the formula

Pn(Q; �n) =
∫
R(Q; �)�n(d�);

where, as before, �n is the empirical distribution of the �rst n observations and �n ≡ �n(�n) is the posterior
distribution as de�ned in Eq. (1). A standard re�nement of Wald’s approximation yields

C exp(−�(�)Q)6R(Q; �)6exp(−�(�)Q);
for some C¿ 0, where

�(�) = sup
{
�¿0:

∫
e�x�(dx)61

}
:

Thus,

C
∫
exp(−�(�)Q)�n(d�)6Pn(Q; �n)6

∫
exp(−�(�)Q)�n(d�);

and we can apply Varadhan’s lemma (see, for example Dembo and Zeitouni, 1993, Theorem 4.3.1) to obtain
the asymptotic formula, for q¿ 0,

lim
n→∞

1
n
logPn(qn; �n) =−inf{H (�|�) + �(�)q: � ∈ supp�};

on the set �n → �. We also assume, as in Theorem 1, that �n(x)= 0, for all n, whenever �(x)= 0, and using
the easy (
 is �nite) fact that � : M1(
) → R+ is continuous. This formula can be simpli�ed in special
cases. Its implications for risk and network management are discussed in Ganesh et al. (1998).
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