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Abstract: We present a range of fluctuation and large deviations results for the logarithm
of the characteristic polynomialZ of a randomN ×N unitary matrix, asN → ∞. First

we show that lnZ/

√
1
2 ln N , evaluated at a finite set of distinct points, is asymptotically

a collection of i.i.d. complex normal random variables. This leads to a refinement of a
recent central limit theorem due to Keating and Snaith, and also explains the covariance
structure of the eigenvalue counting function. Next we obtain a central limit theorem
for ln Z in a Sobolev space of generalised functions on the unit circle. In this limiting
regime, lower-order terms which reflect the global covariance structure are no longer
negligible and feature in the covariance structure of the limiting Gaussian measure. Large
deviations results for lnZ/A, evaluated at a finite set of distinct points, can be obtained
for

√
ln N � A � ln N . For higher-order scalings we obtain large deviations results

for ln Z/A evaluated at a single point. There is a phase transition atA = ln N (which
only applies to negative deviations of the real part) reflecting a switch from global to
local conspiracy.

1. Introduction and Summary

Let U be anN × N unitary matrix, chosen uniformly at random from the unitary
groupU(N), and denote its eigenvalues by exp(iθ1), . . . ,exp(iθN). In order to develop
a heuristic understanding of the value distribution and moments of the Riemann zeta
function, Keating and Snaith [21] considered the characteristic polynomial (normalised
so that its logarithm has zero mean)

Z(θ) = det(I − Ue−iθ ) =
N∏

n=1

(
1 − ei(θn−θ)

)
. (1.1)

This is believed to be a good statistical model for the zeta function at (large but finite)
heightT up the critical line when the mean density of the non-trivial zeros (which equals
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(1/2π) ln(T /2π)) is set equal to the mean density of eigenangles (which isN/2π ). (For
additional evidence of this, concerning other statistics, see [9].)

Note that the law ofZ(θ) is independent ofθ ∈ T (the unit circle). In [21] it is shown
that asN → ∞, lnZ(0)/σ converges in distribution to a standard complex normal
random variable, where 2σ 2 = ln N . That is

ln Z(0)√
1
2 ln N

	⇒ X + iY, (1.2)

whereX andY are independent normal random variables with mean zero and variance
one1, and	⇒ denotes convergence in distribution. (A similar result can be found in [2],
but there the real and imaginary parts of lnZ/σ are treated separately.) In order to make
the imaginary part of the logarithm well-defined, the branch is chosen so that

ln Z(θ) =
N∑

n=1

ln
(
1 − ei(θn−θ)

)
(1.3)

and

−1
2π < Im ln

(
1 − ei(θn−θ)

)
≤ 1

2π. (1.4)

Compare the above central limit theorem with a central limit theorem, due to Selberg,
for the value distribution of the log of the Riemann zeta function along the critical line.
Selberg proved (see, for example, §2.11 of [24] or §4 of [22]) that, for rectanglesB ⊆ C,

lim
T →∞

1

T

∣∣∣∣∣∣
T ≤ t ≤ 2T : ln ζ(1

2 + it)√
1
2 ln ln T

∈ B


∣∣∣∣∣∣ = 1

2π

∫∫
B

e−(x2+y2)/2 dx dy. (1.5)

Equating the mean density of the Riemann zeros at heightT with the mean density of
eigenangles of anN × N unitary matrix, we haveN = ln(T /2π) and thus we see that
these two central limit theorems are consistent.

In this paper we obtain more detailed fluctuation theorems for lnZ asN → ∞, and
a range of large and moderate deviations results.

First we show that lnZ/σ , evaluated at a finite set of distinct points, is asymptotically
a collection of i.i.d. complex normal random variables. This leads to a refinement of the
above central limit theorem, and also explains the mysterious covariance structure which
has been observed, by Costin and Lebowitz [10] and Wieand [32,33], in the eigenvalue
counting function.

We also obtain a central limit theorem for lnZ in a Sobolev space of generalised
functions on the unit circle. In this limiting regime, lower-order terms which reflect
the global covariance structure are no longer negligible and feature in the covariance
structure of the limiting Gaussian measure. The limiting process is not inL2(T). It is,
however, when integrated, Hölder continuous with parameter 1− δ, for anyδ > 0.

Large deviations results for lnZ/A, evaluated at a finite set of distinct points, are
obtained for

√
ln N � A � ln N . For higher-order scalings we obtain large deviations

results for lnZ/A evaluated at a single point. For the imaginary part, all scalingsA � N

1 Perhaps we should warn the reader at this point that some authors use the term “standard complex normal”
to refer to the case where the variance of each component is 1/2.
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lead to quadratic rate functions. AtA = N , the speed isN2, and the rate function is a
convex function for which we give an explicit formula. For the real part, only scalings
up toA = ln N lead to quadratic rate functions. At this critical scaling one observes a
phase transition, and beyond it deviations to the left and right occur at different speeds.
For deviations to the left, the rate function becomes linear; for deviations to the right,
the rate function remains quadratic up to but not including the scalingA = N . At the
scalingA = N , deviations to the left occur at speedN , while deviations to the right
occur at speedN2, and the rate function is again a convex function for which we give an
explicit formula. The phase transition reflects a switch from global to local conspiracy.

Related fluctuation theorems for random matrices can be found in [10,13,12,19,14,
27] and references therein. In particular, Diaconis and Evans [12] give an alternative proof
of Theorem 2.2 below. The large deviation results at speedN2 are partially consistent
with (but do not follow from) a higher-level large deviation principle due to Hiai and
Petz [16]. High-level large deviations results and concentration inequalities for other
ensembles can be found in [5,6,15].

2. Fluctuation Results

Our first main result is that the law of lnZ(0)obtained by averaging over the unitary group
is asymptotically the same as the value distribution of lnZ(θ) obtained by averaging
overθ for a typical realisation ofU :

Theorem 2.1. Set WN(θ) = ln Z(θ)/σ , and denote by m the uniform probability mea-
sure on T (so that m(dθ) = dθ/2π ). As N → ∞, the sequence of laws m ◦ W−1

N
converges weakly in probability to a standard complex normal variable.

This will follow from Theorem 2.2 below, so we defer the proof.
Theorem 2.1 hints at the possibility that thet-range in (1.5) can be significantly

reduced.
The characteristic polynomial can also be used to explain the mysterious “white noise”

process which appears in recent work of Wieand [32,33] on the counting function (and
less explicitly in earlier work of Costin and Lebowitz [10]).AGaussian process is defined
to be a collection of real (complex) random variables{X(α), α ∈ I }, with the property
that, for anyα1, . . . , αm, the joint distribution ofX(α1), . . . , X(αm) is multivariate
(complex) normal. For−π < s < t ≤ π , letCN(s, t) denote the number of eigenangles
of U that lie in the interval(s, t). Wieand proves that the finite dimensional distributions
of the process̃CN defined by

C̃N (s, t) = CN(s, t) − (t − s)N/2π

1
π

√
1
2 ln N

(2.1)

converge to those of a Gaussian processC which can be realised in the following way: let
Y be a centered Gaussian process indexed byT with covariance functionEY (s)Y (t) =
11{s=t} (where 11 is the indicator function) and setC(s, t) = Y (t) − Y (s). What is the
origin of this processY? The answer is as follows. First, it is not hard to show that for
eachN ,

C̃N (s, t) = YN(t) − YN(s), (2.2)
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whereYN(θ) = Im ln Z(θ)/σ . This follows from the identity

11{θ∈(s,t)} = t − s

2π
+ 1

π
Im ln(1 − ei(θ−t)) − 1

π
Im ln(1 − ei(θ−s)), (2.3)

where, as always, the principal branch of the logarithm is chosen as in (1.4).
Moreover:

Theorem 2.2. Set WN(θ) = ln Z(θ)/σ . If r1, . . . , rk ∈ T are distinct, the joint law of
(WN(r1), . . . ,WN(rk)) converges asN → ∞ to that of k i.i.d. standard complex normal
random variables. In particular, the finite dimensional distributions of YN converge to
those of Y .

This suggests that the analogous extension of Selberg’s theorem (1.5) might hold for the
zeta function.

Proof. Let f be a real-valued function inL1(T), and denote by

f̂k =
∫ 2π

0
f (θ)e−ikθm(dθ) (2.4)

its Fourier coefficients. TheN th order Toeplitz determinant with symbolf is defined by

DN [f ] = det(f̂j−k)1≤j,k≤N. (2.5)

Heine’s identity (see, for example, [28]) states that

DN [f ] = E

N∏
n=1

f (θn). (2.6)

The following lemma is more general than we need here, but we record it for later
reference.

Lemma 2.3. For any d(N) � 1 as N → ∞, s, t ∈ Rk with N sufficiently large such
that sj > −d(N) for all j , and rj distinct in T,

E exp

 k∑
j=1

sjRe ln Z(rj )/d + tjIm ln Z(rj )/d

 (2.7)

∼
k∏

j=1

E exp
(
sjRe ln Z(rj )/d + tjIm ln Z(rj )/d

)
(2.8)

∼ exp

 k∑
j=1

ln N

4d2 (s2
j + t2

j )

 . (2.9)

Proof. This follows from Heine’s identity and a result of Basor [4] on the asymptotic
behaviour of Toeplitz determinants with Fisher–Hartwig symbols. The Fisher–Hartwig
symbol we require has the form

f (θ) =
k∏

j=1

(1 − ei(θ−rj ))αj +βj (1 − ei(rj −θ))αj −βj . (2.10)
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Takingαj = sj /2d andβj = −itj /2d, we have, by Heine’s identity,

E exp

 k∑
j=1

sjRe ln Z(rj )/d + tjIm ln Z(rj )/d

 = DN [f ]. (2.11)

Note that theαj ’s are real and theβj ’s purely imaginary. Basor [4] proves that, as
N → ∞, for rj distinct,

DN [f ] ∼ E(α1, β1, r1, . . . , αk, βk, rk)

k∏
j=1

N
α2
j −β2

j , (2.12)

for αj > −1/2, where

E(α1, β1, r1, . . . , αk, βk, rk) =
∏

1≤m,n≤k
m�=n

(
1 − ei(rm−rn)

)−(αm−βm)(αn+βn)

×
k∏

j=1

G(1 + αj + βj )G(1 + αj − βj )

G(1 + 2αj )
,

(2.13)

whereG is the BarnesG-function, and
∣∣arg

(
1 − ei(rm−rn)

)∣∣ ≤ π/2. By closer inspection
of the proof given in [4] it can be seen that (2.12) holds uniformly for|αj | < 1/2 − δ,
and|βj | < γ , for any fixedδ, γ > 02. We remark that uniformity inβ is worked out
carefully in [32] for the caseαj = 0 for eachj , and uniformity inα is discussed in [4].
The statement of the lemma follows from noting thatE(0,0, r1, . . . ,0,0, rk) = 1. ��

Settingd =
√

1
2 ln N = σ completes the proof of Theorem 2.2.��

Proof of Theorem 2.1. SetXN(θ) = Re ln Z(θ)/σ , YN(θ) = Im ln Z(θ)/σ and

φN(s, t) =
∫

T

exp(sXN(θ) + tYN(θ))m(dθ). (2.14)

By the central limit theorem derived in [21] (which we note, in passing, also follows
from Theorem 2.2),

EφN(s, t) = E exp(sXN(0) + tYN(0)) → e(s
2+t2)/2. (2.15)

We also have

EφN(s, t)2 =
∫

T

E exp(sXN(θ) + tYN(θ) + sXN(0) + tYN(0))m(dθ). (2.16)

By Cauchy–Schwartz, the integrand is bounded above by

sup
N≥N0

E exp(2sXN(0) + 2tYN(0)) , (2.17)

2 This was pointed out to us by Harold Widom.
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whereN0 is chosen such that 2s > −σ(N0). Thus, by Theorem 2.2 and the bounded
convergence theorem,

EφN(s, t)2 → es
2+t2, (2.18)

and hence

P(|φN(s, t) − e(s
2+t2)/2| > ε) ≤ Var φN(s, t)/ε2 → 0, (2.19)

for any ε > 0, by Chebyshev’s inequality. Thus, for eachs, t , the sequenceφN(s, t)

converges in probability toe(s
2+t2)/2. The result now follows from the fact that moment

generating functions are convergence-determining.��
We note that Szegö’s asymptotic formula for Toeplitz determinants does not apply in

the above context. Szegö’s theorem for real-valued functions states that if

A(h) =
∞∑
k=1

k|ĥk|2 < ∞, (2.20)

then

DN [eh] = exp
(
Nĥ0 + A(h) + o(1)

)
(2.21)

asN → ∞. Combining this with Heine’s identity, we see that ifĥ0 = 0 andA(h) < ∞,
then Trh(U) is asymptotically normal with zero mean and variance 2A(h). Now, we
can writeRe ln Z(θ) = Tr h(U), whereh(t) = Re ln(1 − ei(t−θ)), but the Fourier
coefficientsĥk are of order 1/k in this case andA(h) = +∞.

We can, however, apply Szegö’s theorem to obtain a functional central limit theorem
for ln Z. Actually, we will use the following fact, due to Diaconis and Shahshahani [13],
which can be deduced from Szegö’s theorem.

Lemma 2.4. For each l, the collection of random variables{√
2

j
Tr U−j , j = 1, . . . , l

}
(2.22)

converges in distribution to a collection of i.i.d. standard complex normal random vari-
ables.

(In fact, it is shown in [13] that there is exact agreement of moments up to high order for
eachN . See also [18], where superexponential rates of convergence are established.)

Denote byHa
0 the space of generalised real-valued functionsf on T with f̂0 = 0

and

‖f ‖2
a =

∞∑
k=−∞

|k|2a|f̂k|2 = 2
∞∑
k=1

k2a|f̂k|2 < ∞. (2.23)

This is a Hilbert space with the inner product

〈f, g〉a =
∞∑

k=−∞
|k|2af̂kĝ

∗
k . (2.24)
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It is also a closed subspace of the Sobolev spaceHa , which is defined similarly but
without the restrictionf̂0 = 0. Sobolev spaces have the following useful property: the
unit ball inHa is compact inHb, whenevera > b. It follows that the unit ball inHa

0 is
compact inHb

0 for a > b. We shall make use of this fact later. Note that, whena = 0,
〈· , ·〉a is just the usual inner product onL2(T); in this case we will drop the subscript.

Fix a < 0, and define a Gaussian measureµ on Ha
0 × Ha

0 as follows. First, let
X1, X2, . . . be a sequence of i.i.d. standard complex normal random variables,X0 = 0
andX−k = X∗

k , and define a random elementF ∈ Ha
0 by

F(θ) =
∞∑

k=−∞

(
Xk

2
√

2|k|
)

eikθ . (2.25)

(To see thatF ∈ Ha
0 , note that in factE‖F‖2

a < ∞ for a < 0.) Now defineµ to be the

law of (F,AF), whereA is the Hilbert transform onH−1/2
0 :

Âf k =
{
if̂k k > 0
−if̂k k < 0.

(2.26)

We will describe some properties ofµ later. First we will prove:

Theorem 2.5. The law of (Re ln Z, Im ln Z) converges weakly to µ.

Proof. First note thatIm ln Z = A(Re ln Z) and, fork �= 0,

(
R̂e ln Z

)
k

= − Tr U−k

2|k| . (2.27)

Convergence on cylinder sets (in the Fourier representation) therefore follows from
Lemma 2.4.

To prove tightness inHa
0 ×Ha

0 we will use the fact that the unit ball inHb
0 is compact

in Ha
0 for a < b < 0, and the uniform bound

E‖Re ln Z‖2
b = 2E

∞∑
k=1

k2b
∣∣∣(R̂e ln Z

)
k

∣∣∣2 (2.28)

= 1

2

∞∑
k=1

k2b−2E| Tr U−k|2 (2.29)

= 1

2

∞∑
k=1

k2b−2 min(k,N) (2.30)

≤ 1

2

∞∑
k=1

k2b−1; (2.31)
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a similar bound holds forIm ln Z. We have used the fact thatE| Tr Uk|2 = min(|k|, N)

for k �= 0 (see, for example, [25]). Thus,

sup
N

P (max{‖Re ln Z‖b, ‖Im ln Z‖b} > q) (2.32)

≤ sup
N

{P (‖Re ln Z‖b > q) + P (‖Im ln Z‖b > q)} (2.33)

≤ sup
N

{
E‖Re ln Z‖2

b + E‖Im ln Z‖2
b

}
/q2 (2.34)

→ 0 (2.35)

asq → ∞, so we are done. ��
We will now discuss some properties of the limiting measureµ. Let (F,AF) be a

realisation ofµ. First note thatF andAF have the same law. Recalling the construction
of F , we note that fork > 0 the random variables|F̂k|2 are independent and|F̂k|2 is
exponentially distributed with mean 1/4k. It follows that‖F‖a < ∞ if, and only if,
a < 0. In particular,F is almost surely not inL2(T).

Nevertheless, we can characterise the law ofF by stating that, forf ∈ H
−1/2
0 ,

2〈f, F 〉/‖f ‖−1/2 (2.36)

is a standard normal random variable. The covariance is given by

E〈f, F 〉〈g, F 〉 = 1

4
〈f, g〉−1/2. (2.37)

We note that

〈f, g〉−1/2 = −2
∫

T2
ln |eiθ − eiφ |f (φ)g(θ) m(dφ)m(dθ). (2.38)

In the language of potential theory, iff is a charge distribution, then‖f ‖2−1/2 is the
logarithmic energy of f . The logarithmic energy functional also shows up as a large
deviation rate function for the sequence of eigenvalue distributions: see Sect. 3.5 below.

We can also write down a stochastic integral representation for the processF . If we
set

S(φ) =
∫ φ

F (θ)dθ, (2.39)

thenS has the same law as

S̃(φ) = 1

2π

∫ 2π

0
b(φ − θ)dB(θ), (2.40)

whereB is a standard Brownian motion and

b(θ) = 1√
8π

∞∑
k=1

k−3/2 cos(kθ). (2.41)

To see this, compare covariances using the identity

1

4

∥∥∥∥11[0,t] − t

2π

∥∥∥∥2

−1/2
= 1

4π2

∞∑
k=1

1 − cos(kt)

k3 . (2.42)

Finally, we observe:



Characteristic Polynomial of Random Unitary Matrix 437

Lemma 2.6. Let δ > 0. The process S has a modification which is almost surely Hölder
continuous with parameter 1 − δ.

Proof. This follows from Kolmogorov’s criterion (see, for example, [26, Theorem 2.1])
and the fact that

E|S(t) − S(0)|2 = 1

4

∥∥∥∥11[0,t] − t

2π

∥∥∥∥2

−1/2
(2.43)

= 1

4π2

∞∑
k=1

1 − cos(kt)

k3 (2.44)

∼ − 1

8π2 t2 ln t, (2.45)

as t → 0+. To see that this asymptotic formula is valid, one can use the fact that the
expression (2.44) is related to Claussen’s integral (see, for example, [1, §27.8]).��

We conclude this section with two remarks on Theorem 2.5. First, Rains [25] showed
that, for eachθ �= 0,

Var CN(0, θ) = 1

π2 (ln N + γ + 1 + ln |2 sin(θ/2)|) + o(1), (2.46)

whereCN(0, θ) is the number of eigenangles lying in the interval(0, θ). Comparing
this with (2.2) we see that

EIm ln Z(θ)Im ln Z(0) = −1

2
ln |2 sin(θ/2)| + o(1). (2.47)

This is consistent with the fact that (formally)

EF(θ)F (0) = −1

2
ln |2 sin(θ/2)|. (2.48)

The formal identity (2.48) in fact contains all of the information needed to determine
the covariance structure of the processF . The fluctuation theorem (2.5) is therefore a
statement which contains information about the global covariance structure of lnZ. The
covariance (2.47) is too small to feature in the scaling of Theorem 2.2.

Finally, the following observation arose in discussions with Marc Yor. The process
F also appears in the following context. LetB be a standard complex Brownian motion,
andf : C → R defined byf (z) = h(argz)δ(|z| = 1) for someh : T → R with
ĥ0 = 0. Then, ast → ∞,

1

π
√

ln t

∫ t

0
f (Bs)ds 	⇒ 〈h, F 〉. (2.49)

This can be deduced from a result of Kasahara and Kotani given in [20].
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3. Large Deviations

In this section we present large and moderate deviations results for lnZ(0). We begin
with a quick review of one-dimensional large deviation theory (see, for example, [8,
11]).

We are concerned with the log-asymptotics of the probability distribution of
RN/A(N), whereRN is some one-dimensional real random variable andA(N) is a
scaling that is much greater than the square root of the variance ofRN (so we are outside
the regime of the central limit theorem).

Suppose that there exists a functionB(N) (which tends to infinity asN → ∞), such
that

;(λ) := lim
N→∞

1

B(N)
ln E exp

(
λ
B(N)

A(N)
RN

)
(3.1)

exists as an extended real number, for eachλ (i.e. the pointwise limit exists in the
extended reals). Theeffective domain of ;(·) is the set

D = {λ ∈ R : ;(λ) < ∞} (3.2)

and its interior is denoted byD◦. Theconvex dual of ;(·) is given by

;∗(x) = sup
λ∈R

{λx − ;(λ)}. (3.3)

Theorem 3.1. For a < b, if ;(·) is differentiable in D◦ and if

(a, b) ⊆ {;′(λ) : λ ∈ D◦}, (3.4)

then

lim
N→∞

1

B(N)
ln P

{
RN

A(N)
∈ (a, b)

}
= − inf

x∈(a,b)
;∗(x). (3.5)

If (3.5) holds we say thatRN/A(N) satisfies thelarge deviation principle (LDP) with
speedB(N) and rate function;∗.

Some partial moderate deviations results can be obtained using Lemma 2.3; how-
ever, for many of the results presented here we will need more detailed information. In
particular, we will make use of the following explicit formula (see, for example, [2,7,
21]):

E exp(sRe ln Z(θ) + tIm ln Z(θ))

= G(1 + s/2 + it/2)G(1 + s/2 − it/2)G(1 + N)G(1 + N + s)

G(1 + N + s/2 + it/2)G(1 + N + s/2 − it/2)G(1 + s)
, (3.6)

valid for Re(s ± it) > −1, whereG(·) is the BarnesG-function, described in Ap-
pendix A. We will find the single moment generating functions useful, which we record
here as

MN(s) := E exp(sRe ln Z(0)) (3.7)

= G2
(
1 + 1

2s
)
G(N + 1)G(N + 1 + s)

G(1 + s)G2
(
N + 1 + 1

2s
) , (3.8)
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and

LN(t) := E exp(itIm ln Z(0)) (3.9)

= G
(
1 + 1

2t
)
G
(
1 − 1

2t
)
G2(N + 1)

G
(
N + 1 + 1

2t
)
G
(
N + 1 − 1

2t
) . (3.10)

Theorem 3.2. For any A(N) � ln N , and a < b < 0,

lim
N→∞

1

A
ln P

{
Re ln Z(0)

A
∈ (a, b)

}
= b. (3.11)

Also, for any a < b < −1/2,

lim
N→∞

1

ln N
ln P

{
Re ln Z(0)

ln N
∈ (a, b)

}
= b + 1/4. (3.12)

Proof. From Theorem 3.9 we have that if lim supN→∞ x/ ln N < −1/2, then

p(x) ∼ ex exp
(
3ζ ′(−1) + 1

12 ln 2 − 1
2 ln π

)
N1/4, (3.13)

wherep(x) is the probability density function ofRe ln Z(0).
Therefore, fora < b < −1/2,

P

{
Re ln Z(0)

ln N
∈ (a, b)

}
=
∫ b ln N

a ln N

p(x) dx

∼ exp
(
3ζ ′(−1) + 1

12 ln 2 − 1
2 ln π

)
N1/4

(
Nb − Na

)
(3.14)

and the result follows from taking logarithms of both sides. Similarly forA(N) � ln N

with a < b < 0. ��

3.1. Large deviations at the scaling A = N . Since Re ln Z(0) ≤ N ln 2 and
|Im ln Z(0)| ≤ Nπ/2, the scalingA = N is the maximal non-trivial scaling.

Theorem 3.3. The sequence Re ln Z(0)/N satisfies the LDP with speed N2 and rate
function given by the convex dual of

;(s) =
{

1
2(1 + s)2 ln(1 + s) − (1 + 1

2s
)2

ln
(
1 + 1

2s
)− 1

4s
2 ln 2s for s ≥ 0

∞ for s < 0.
(3.15)

Proof. ln E exp(sNRe ln Z(0)) = ln MN(Ns), the asymptotics of which are given in
Appendix C, and so

;(s) = lim
N→∞

1

N2 ln MN(Ns) (3.16)

= 1
2(1 + s)2 ln(1 + s) − (1 + 1

2s
)2

ln
(
1 + 1

2s
)− 1

4s
2 ln 2s (3.17)

for s ≥ 0, and;(s) = ∞ for s < 0.
If x > 0, then Theorem 3.1 implies that the rate function,I (x), is given by the convex

dual of;(s). If x < 0, then Theorem 3.2 implies thatI (x) = 0. Thus forx ∈ R, I (x)
is given by the convex dual of;(s), and this completes the proof of Theorem 3.3.��
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One can also obtain an LDP for the imaginary part:

Theorem 3.4. The sequence Im ln Z(0)/N satisfies the LDP with speed N2 and rate
function given by the convex dual of

;(t) = 1
8t

2 ln

(
1 + 4

t2

)
− 1

2 ln
(
1 + 1

4t
2
)

+ t arctan

(
1

2
t

)
. (3.18)

Proof. ln E exp(tNIm ln Z(0)) = ln LN(−iNt), and the asymptotics (given in Ap-
pendix D) imply that

;(t) = lim
N→∞

1

N2 ln LN(−iNt) (3.19)

= 1
8t

2 ln

(
1 + 4

t2

)
− 1

2 ln
(
1 + 1

4t
2
)

+ t arctan

(
1

2
t

)
(3.20)

Theorem 3.1 implies thatJ (y), the rate function, is given by the convex dual of;(t),
for all y ∈ R. ��

3.2. Moderate Deviations. At other scalings, one finds that the rate function is either
quadratic or linear.

Theorem 3.5. For scalings
√

ln N � A � N , the sequence Re ln Z(0)/A satisfies
the LDP with speed B = −A2/W−1(−A/N) (where W−1 is Lambert’s W -function,
described in Appendix B) and rate function given by

I (x) =


x2 if

√
ln N � A � ln N{

x2

−x − 1/4
x ≥ −1/2
x < −1/2 if A = ln N{

x2

0
x ≥ 0
x < 0 if ln N � A � N.

(3.21)

Proof. For a given scaling sequenceA(N) we wish to findB(N) such that

lim
N→∞

1

B
ln MN(sB/A) (3.22)

exists as a non-trivial pointwise limit.
Forχ(N) � 1 asN → ∞, we have for eachs,

1

B
ln MN(sN/χ) =

{
1
4s

2 N2 ln χ

Bχ2 + Os

(
N2

χ2

)
if Ns/χ > −1

∞ if Ns/χ ≤ −1
(3.23)

which follows from results summarized in Appendix C.
Therefore a non-trivial limit of (3.22) occurs ifB = N2 ln χ/χ2, whereχ = NA/B,

that is, if

B = A2

−W−1
(− A

N

) . (3.24)
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Note that the restrictionχ → ∞ impliesA � N , and that the restriction thatB → ∞
impliesA � √

ln N .
If we setδ = lim inf N→∞ χ

N
, then we have

;(s) = lim
N→∞

1

B
ln MN(sB/A) (3.25)

=
{

1
4s

2 for s > −δ

∞ for s < −δ.
(3.26)

If
√

ln N � A � ln N thenδ = +∞ and Theorem 3.1 implies thatI (x) = x2 for all
x ∈ R.

If A = ln N , thenδ = 1/2, and Theorem 3.1 applies only forx > −1/2, where we
haveI (x) = x2. However, sinceB ∼ ln N at this scaling, Theorem 3.2 implies that, for
x < −1/2, I (x) = |x| − 1/4.

Finally, if ln N � A � N , thenδ = 0, andI (x) = x2 for x > 0 by Theorem 3.1
andI (x) = 0 for x < 0 by Theorem 3.2 (sinceB � A for A � ln N ).

This completes the proof of Theorem 3.5,��
Remark. For all

√
ln N � A � N it turns out thatI (x) is the convex dual of;(s).

Once again, a similar result is true for the imaginary part, but this time the rate
function is always quadratic.

Theorem 3.6. For scalings
√

ln N � A � N , the sequence Im ln Z(0)/A satisfies the
LDP with speed B = −A2/W−1(−A/N) and rate function J (y) = y2.

Proof. For a given scaling sequenceA(N) we wish to findB(N) such that

lim
N→∞

1

B
ln LN(−itB/A) (3.27)

exists as a non-trivial pointwise limit. Applying results from Appendix D we have

ln LN(−itB/A) = 1
4t

2N2 ln χ

χ2 + Ot

(
N2

χ2

)
(3.28)

for all t ∈ R.
So, as in the proof of Theorem 3.5, we needB to be as in (3.24) (which will be valid

for
√

ln N � A � N ), and the rate function will be given by the convex dual of1
4t

2,
i.e.J (y) = y2. ��

3.3. Large deviations of ln Z(θ) evaluated at distinct points.

Theorem 3.7. For
√

ln N � A � ln N , and for any r1, . . . , rk (distinct), the sequence

(Re ln Z(r1)/A, Im ln Z(r1)/A, . . . ,Re ln Z(rk)/A, Im ln Z(rk)/A) (3.29)

satisfies the LDP in (R2)k with speed B = A2/ ln N and rate function

I (x1, y1 . . . , xk, yk) =
k∑

j=1

x2
j + y2

j . (3.30)
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Proof. By Theorem 2.3, ifB/A � 1,

ln E exp

 k∑
j=1

sjRe ln Z(rj )B/A + tjIm ln Z(rj )B/A


∼
 N∑

j=1

(s2
j + t2

j )/4

 B2 ln N

A2 , (3.31)

so choosing the speedB = A2/ ln N , the stated result follows from a multidimensional
analogue of Theorem 3.1 (see, for example, [11]).��
Remark. If B is given by (3.24), then for

√
ln N � A � ln N , B ∼ A2

ln N
. So forA in

this restricted range, this theorem generalizes Theorems 3.5 and 3.6.

From this we can deduce large deviations results for the counting function, using the
identity (2.2). For example:

Theorem 3.8. For
√

ln N � A � ln N , and −π < s < t ≤ π , the sequence
(CN(s, t) − (t − s)N/2π)/A satisfies the LDP in R with speed B = A2/ ln N and
rate function L(x) = π2x2/2.

3.4. Refined large deviations estimates. By Fourier inversion, the probability density of
Re ln Z(0) is given by

p(x) = 1

2π

∫ ∞

−∞
e−iyxMN(iy) dy, (3.32)

whereMN(iy) = EeiyRe ln Z(0) is given by (3.8).

Theorem 3.9. If lim supN→∞ x/ ln N < −1/2, then

p(x) ∼ ex exp
(
3ζ ′(−1) + 1

12 ln 2 − 1
2 ln π

)
N1/4. (3.33)

Proof. We evaluate

1

2π

∫
C

e−iyxMN(iy) dy, (3.34)

whereC is the rectangle with vertices−R, R, R + i + εi, −R + i + εi, for ε a fixed
real number subject to 0< ε < 1, and letR → ∞. Note that the contour encloses only
the simple pole aty = i.

The asymptotics forG(x) show that the integral on the sides of the contour vanish
asM → ∞, which means

p(x) = i Res
y=i

{
e−iyxMN(iy)

}
+ E, (3.35)

where

E = ex+εx

2π

∫ ∞

−∞
e−itxMN(it − 1 − ε) dt. (3.36)
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It is not hard to show that

i Res
y=i

{
e−iyxMN(iy)

}
∼ ex exp

(
3ζ ′(−1) + 1

12 ln 2 − 1
2 ln π

)
N1/4, (3.37)

and

|E| ≤ ex+εx

2π

∫ ∞

−∞
|MN(it − 1 − ε)|dt (3.38)

∼ ex+εx

√
π

∣∣∣∣∣G2
(1

2 − 1
2ε
)

G(−ε)

∣∣∣∣∣N1/4+ε/2+ε2/4(ln N)−1/2. (3.39)

Thus|E| � exN1/4 when

exεNε/2+ε2/4(ln N)−1/2 � 1. (3.40)

Thus the error term can be made subdominant if

lim sup
N→∞

x

ln N
< −1

2
(3.41)

by choosing

0 < ε < min

{
−2 − 4 lim sup

N→∞
x

ln N
, 1

}
, (3.42)

which completes the proof of the theorem.��
Remark. For x < 0, it is possible to extend the above argument to include all poles,
by integrating over the rectangle with vertices−R, R, R + iR, −R + iR, and letting
R → ∞ in order to show that

p(x) =
∞∑

n=1

e(2n−1)x Res
s=0

{
e−sxMN(s − (2n − 1))

}
. (3.43)

The problem with this evaluation ofp(x) is that it is hard to evaluate the residues of the
non-simple poles in the sum, and when one does so the sum is asymptotic (inx) only
for x � − ln N .

Using Appendix C on the asymptotics ofMN(t), the saddle point method gives

• For |x| � ln N ,

p(x) ∼ 1√
π(ln N + 1 + γ )

exp

( −x2

ln N + 1 + γ

)
(3.44)

(This result was first found in [21] forx = O(
√

ln N) – the central limit theorem.)

• For lnN � x � N1/3, writing W for W−1
(− 4x

eN

)
,

p(x) ∼ 1√
π

exp

(−x2

−W
+ x2

2W2 − 5
12 ln(−W) − 1

12 ln x + 1
12 ln 2 + ζ ′(−1)

)
.

(3.45)
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The probability density ofIm ln Z(0) is given by

q(x) = 1

2π

∫ ∞

−∞
e−iyxLN(y) dy (3.46)

which we note is an even function.
Applying the results from Appendix D to calculateLN(s), the saddle point method

gives

• For |x| � ln N

q(x) ∼ 1√
π(ln N + 1 + γ )

exp

( −x2

ln N + 1 + γ

)
. (3.47)

• For lnN � |x| � √
N , writing W for W−1

(−x
Ne

)
,

q(x) ∼ 1√
π

exp

(−x2

−W
+ x2

W2 − 1
3 ln(−W) − 1

6 ln x + 2ζ ′(−1)

)
. (3.48)

3.5. Inside the circle. The sequence of spectral measures

SN = 1

N

N∑
n=1

δθn (3.49)

satisfies the LDP inM1(T) with speedN2 and good convex rate function given by the
logarithmic energy functional

B(ν) = −
∫ 2π

0

∫ 2π

0
ln |eis − eit |ν(ds)ν(dt). (3.50)

For a proof of this fact, see [16].
In this context, Varadhan’s lemma (see, for example, [11]) can be stated as follows.

Theorem 3.10. For any continuous φ : M1(T) −→ R satisfying the condition

lim sup
N→∞

1

N2 ln EeλN
2φ(SN ) < ∞ (3.51)

for some λ > 1, then

lim
N→∞

1

N2 ln EeN
2φ(SN ) = sup

ν∈M1(T)

{φ(ν) − B(ν)} . (3.52)

Now, we can writeRe ln Z(0)/N = F0(SN), where

F0(ν) :=
∫ 2π

0
Re ln

(
1 − eiθ

)
ν(dθ); (3.53)
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however,F0 is not weakly continuous, and Varadhan’s lemma does not apply. Never-
theless, it is interesting to see if it gives the correct answer. That is, does the asymptotic
cumulant generating function of Theorem 3.3 satisfy

;(s) = sup
ν∈M1(T)

{sF0(ν) − B(ν)}? (3.54)

If so, this variational formula would contain information about how large deviations for
Re ln Z(0)/N actually occur. A similar variational problem can be written down for the
imaginary part. Unfortunately, we are not able to even formally verify this except in very
restricted and degenerate cases.

Consider first, forε > 0, thecontinuous function

Fε(ν) :=
∫ 2π

0
Re ln

(
1 − e−εeiθ

)
ν(dθ). (3.55)

ThenRe ln Zε/N = Fε(SN), where

Zε =
N∏

n=1

(
1 − e−εeiθn

)
. (3.56)

Applying Varadhan’s lemma, we obtain

;ε(s) := lim
N→∞

1

N2 ln EeNsRe ln Zε)

= sup
ν∈M1(T)

{sFε(ν) − B(ν)} .

It is possible to solve this variational problem in the restricted range−eε−1 ≤ s ≤ eε−1,
where we obtain:

;ε(s) = 1
4s

2 ln

(
1

1 − e−2ε

)
. (3.57)

Outside this range, it is much harder to solve.
Note that, lettingε → 0, we formally obtain;(s) = ∞ for −2 ≤ s < 0, which

agrees (in this very restricted range) with the;(s) of Theorem 3.3.
Similarly, for

Gε :=
∫ 2π

0
Im ln

(
1 − e−εeiθ

)
ν(dθ), (3.58)

we get that for|t | ≤ eε − e−ε ,

lim
N→∞

1

N2 ln EeNtIm ln Zε = 1
4t

2 ln

(
1

1 − e−2ε

)
, (3.59)

so lettingε → 0 all we could possibly obtain is;(0) = 0.
In both cases, the problem (of extendings and t beyond the ranges given) comes

from finding the maximum over the set of allnon-negative functions; only within the
ranges given does the infimiser lie away from the boundary of this set.
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Finally, we remark that

Re ln
(
1 − e−εeiθn

)
=

∞∑
k=−∞
k �=0

−e−|k|ε

2|k| eikθn , (3.60)

and

Im ln
(
1 − e−εeiθn

)
=

∞∑
k=−∞
k �=0

ie−|k|ε

2k
eikθn , (3.61)

so Szegö’s theorem implies that bothRe ln Zε andIm ln Zε converges in distribution to
normal random variables, with mean 0 and variance−1

2 ln
(
1 − e−2ε

)
. Note the lack of√

ln N normalization, as required in the caseε = 0.

3.6. The phase transition. The phase transition of Theorem 3.5 can be understood in
terms of how deviations to the left for the real part actually occur, given that they do
occur: here we present some heuristic arguments.

For
√

ln N � A � ln N andB = A2/ ln N , we have (x > 0)

1

B
ln P(Re ln Z(0) < −xA) ∼ −x2. (3.62)

On the other hand, ifA � ln N ,

1

A
ln P(Re ln Z(0) < −xA) ∼ −x. (3.63)

Fix ε > 0 and consider the lower bound

P(Re ln Z(0) < −xA)

≥ P

(
ln |1 − eiθ1| < −(x + ε)A,

N∑
n=2

ln |1 − eiθn | < εA

)
. (3.64)

Assuming the two events on the right hand side are approximately independent, and
using the facts thatθ1 is uniformly distributed onT and

P

(
N∑

n=2

ln |1 − eiθn | < εA

)
→ 1, (3.65)

this yields, forA � ln N , the lower bound

lim inf
N→∞

1

A
ln P(Re ln Z(0) < −xA) ≥ lim inf

N→∞
1

A
ln P

(
ln |1 − eiθ1| < −(x + ε)A

)
(3.66)

= −(x + ε); (3.67)



Characteristic Polynomial of Random Unitary Matrix 447

sinceε is arbitrary, we obtain

lim inf
N→∞

1

A
ln P(Re ln Z(0) < −xA) ≥ −x. (3.68)

On the other hand, if
√

ln N � A � ln N , the same estimate leads to

lim inf
N→∞

1

B
ln P(Re ln Z(0) < −xA) ≥ −∞. (3.69)

The fact that this simple estimate gives the right answer whenA � ln N , suggests
that if the deviation

{Re ln Z(0) < −xA} (3.70)

occurs, it occurs simply because there is an eigenvalue too close to 1 (the other eigen-
values are “free to follow their average behaviour”). This is what we mean by alocal
conspiracy.

The fact that it leads to a gross underestimate when
√

ln N � A � ln N , suggests
that in this case the deviation must involve the cooperation of many eigenvalues.A similar
estimate based on only a (fixed) finite number of eigenvalues deviating from their mean
behaviour leads to a similarly gross underestimate. Clearly it is more efficient in this
case for many eigenvalues to arrange themselves and “share the load”, so to speak, than
it is for one to bear it alone.

A. Barnes’ G-Function

Barnes’G-function is defined [3] for allz by

G(z + 1) = (2π)z/2 exp
(
−1

2

(
z2 + γ z2 + z

)) ∞∏
n=1

(
1 + z

n

)n
e−z+z2/2n, (A.1)

whereγ = 0.5772. . . is Euler’s constant.
TheG-function has the following properties [3,30]:

Recurrence relation:G(z + 1) = D(z)G(z).
Complex conjugation:G∗(z) = G(z∗).
Asymptotic formula, valid for|z| → ∞ with | arg(z)| < π ,

ln G(z + 1) ∼ z2 (1
2 ln z − 3

4

)+ 1
2z ln 2π − 1

12 ln z + ζ ′(−1) + O

(
1

z

)
. (A.2)

Taylor expansion for|z| < 1,

ln G(z + 1) = 1
2(ln 2π − 1)z − 1

2(1 + γ )z2 +
∞∑

n=3

(−1)n−1ζ(n − 1)
zn

n
. (A.3)

Special values:G(1) = 1 andG(1/2) = e3ζ ′(−1)/2π−1/421/24.
G(z + 1) has zeros atz = −n of ordern, wheren = 1,2, . . . .



448 C. P. Hughes, J. P. Keating, N. O’Connell

Logarithmic differentiation can be written in terms of the polygamma functions,
E(n)(z),

dn+1

dzn+1 ln G(z) = F(n)(z) (A.4)

and

F(0)(z) = 1
2 ln 2π − z + 1

2 + (z − 1)E(0)(z). (A.5)

See, for example, [1] for properties of the gamma and polygamma functions.

B. Lambert’s W -Function

The LambertW -function (sometimes called the Omega function) is defined to be the
solution of

W(x)eW(x) = x. (B.1)

It has a branch point atx = 0, and is double real-valued for−e−1 < x < 0.
The unique branch that is analytic at the origin is called the principal branch. It is

real in the domain−e−1 < x < ∞, with a range−1 to ∞. The second real branch is
referred to as the−1 branch, denotedW−1. It is real in the domain−e−1 < x < 0, with
a range−∞ to −1.

The equation

ln x = vxβ (B.2)

has solution

x = exp

(−W(−βv)

β

)
. (B.3)

There are various asymptotic expansions of the W function:

• As x → ∞,

W0(x) ∼ ln x − ln ln x + ln ln x

ln x
. (B.4)

• As x → 0 on the principal branch,

W0(x) ∼ x − x2 + 3
2x

3. (B.5)

• As x → 0− on the−1 branch,

W−1(x) ∼ ln |x| − ln | ln |x|| + ln | ln |x||
ln |x| . (B.6)
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C. Asymptotics of ln MN(x)

From the asymptotics for theG-function, (A.2), we have forx > −1,

ln MN(x) = 2 lnG
(
1 + 1

2x
)− ln G(1 + x) − 3

8x
2 + 1

2N
2 ln N

+ 1
2(N + x)2 ln(N + x) − (N + 1

2x
)2

ln
(
N + 1

2x
)

+ 1
6 ln

(
N + 1

2x
)− 1

12 ln(N + x) − 1
12 ln N + O

(
1

N

)
,

(C.1)

where the error term is independent ofx.
This may be simplified if we assume thatx(N) is restricted to various regimes:

• If |x| � 1, then

ln MN(x) = 1
4x

2(ln N + 1 + γ ) + O
(
x3
)

+ O

(
1

N

)
. (C.2)

• If x = O(1) andx > −1, then

ln MN(x) = 1
4x

2 ln N + 2 lnG
(
1 + 1

2x
)− ln G(1 + x) + O

(
1

N

)
. (C.3)

• If 1 � x � 3
√

N , then

ln MN(x) = 1
4x

2 (ln N − ln x − ln 2 + 3
2

)+ 1
6 ln 2 − 1

12 ln x + ζ ′(−1)

+ O

(
x3

N

)
+ O

(
1

x

)
.

(C.4)

• If x = λN with λ = O(1) andλ > 0, then

ln MN(x) = N2
{

1
2(1 + λ)2 ln(1 + λ) − (1 + 1

2λ
)2

ln
(
1 + 1

2λ
)

−1
4λ

2 ln(2λ)
}

− 1
12 ln N − 1

12 ln λ + ζ ′(−1)

+ 1
6 ln(2 + λ) − 1

12 ln(1 + λ) + O

(
1

N

)
.

(C.5)

D. Asymptotics of ln LN(ix)

We considerx ∈ R. From the asymptotics for theG-function, (A.2), we have

ln LN(ix) = ln G
(
1 + 1

2ix
)+ ln G

(
1 − 1

2ix
)− 3

8x
2 + N2 ln N

− 1
2

(
N + 1

2ix
)2

ln
(
N + 1

2ix
)− 1

2

(
N − 1

2ix
)2

ln
(
N − 1

2ix
)

− 1
6 ln N + 1

12 ln
(
N + 1

2ix
)+ 1

12 ln
(
N − 1

2ix
)+ O

(
1

N

)
.

(D.1)
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Constrainingx(N) to lie in various regimes simplifies the above considerably:

• If |x| � 1, then

ln LN(ix) = 1
4x

2(ln N + 1 + γ ) + O(x4) + O

(
1

N

)
. (D.2)

• If x = O(1), then

ln LN(ix) = ln G
(
1 + 1

2ix
)+ ln G

(
1 − 1

2ix
)+ 1

4x
2 ln N + O

(
1

N

)
. (D.3)

• If 1 � |x| � √
N , then

ln LN(ix) = 1
4x

2 (ln N − ln x + ln 2 + 3
2

)− 1
6 ln x + 1

6 ln 2 + 2ζ ′(−1)

+ O

(
x4

N2

)
+ O

(
1

x2

)
.

(D.4)

• If x = λN with λ = O(1), then

ln LN(ix) = N2
{

1
8λ

2 ln
(
1 + 4λ−2

)
− 1

2 ln
(
1 + 1

4λ
2
)

+ λ tan−1 1
2λ
}

− 1
6 ln N + 1

12 ln
(
1 + 4λ−2

)
+ 2ζ ′(−1) + O

(
1

N

)
.

(D.5)
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