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Abstract: We presentarange of fluctuation and large deviations results for the logarithm
of the characteristic polynomia of a randomV x N unitary matrix, agV — oo. First

we show that IrZ /, /% In N, evaluated at a finite set of distinct points, is asymptotically

a collection of i.i.d. complex normal random variables. This leads to a refinement of a
recent central limit theorem due to Keating and Snaith, and also explains the covariance
structure of the eigenvalue counting function. Next we obtain a central limit theorem
for In Z in a Sobolev space of generalised functions on the unit circle. In this limiting
regime, lower-order terms which reflect the global covariance structure are no longer
negligible and feature in the covariance structure of the limiting Gaussian measure. Large
deviations results for IZ /A, evaluated at a finite set of distinct points, can be obtained
for/InN « A <« InN. For higher-order scalings we obtain large deviations results
for In Z/ A evaluated at a single point. There is a phase transitioh=atin N (which

only applies to negative deviations of the real part) reflecting a switch from global to
local conspiracy.

1. Introduction and Summary

Let U be anN x N unitary matrix, chosen uniformly at random from the unitary
groupl/(N), and denote its eigenvalues by &4qa), . .. , exp(ify). In order to develop

a heuristic understanding of the value distribution and moments of the Riemann zeta
function, Keating and Snaith [21] considered the characteristic polynomial (hormalised
so that its logarithm has zero mean)

N
Z@) =detl —Ue ) =] (1) (1.1)
n=1
This is believed to be a good statistical model for the zeta function at (large but finite)
heightT up the critical line when the mean density of the non-trivial zeros (which equals
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(1/27) In(T /27)) is set equal to the mean density of eigenangles (whisty&r). (For
additional evidence of this, concerning other statistics, see [9].)

Note that the law o () is independent af € T (the unit circle). In [21] itis shown
that asN — oo, InZ(0)/o converges in distribution to a standard complex normal
random variable, wheresZ = In N. That is

In Z(0)
/1
5InN
whereX andY are independent normal random variables with mean zero and variance
oné', and=> denotes convergence in distribution. (A similar result can be found in [2],

but there the real and imaginary parts o#lyo are treated separately.) In order to make
the imaginary part of the logarithm well-defined, the branch is chosen so that

= X +iY, (1.2)

InZ(@)_ZIn( O ) (1.3)

and

Nl

—Llr <dmin(1-¢@=9) <1y 1.4
5 < (1.4)

Compare the above central limit theorem with a central limit theorem, due to Selberg,
for the value distribution of the log of the Riemann zeta function along the critical line.
Selberg proved (see, for example, §2.11 of [24] or 84 of [22]) that, for rectaBgie L,

1 In¢(d +ir 1 .
im = [{T <r<2T : e+ €B|=o- // e D/2 g dy. (1.5)
T JJB

T—oo T - 1
VzIninT

Equating the mean density of the Riemann zeros at h&ighith the mean density of
eigenangles of av x N unitary matrix, we haveV = In(T/27) and thus we see that
these two central limit theorems are consistent.

In this paper we obtain more detailed fluctuation theorems f@r&sN — oo, and
a range of large and moderate deviations results.

First we show that I'¥ /o, evaluated at a finite set of distinct points, is asymptotically
a collection of i.i.d. complex normal random variables. This leads to a refinement of the
above central limit theorem, and also explains the mysterious covariance structure which
has been observed, by Costin and Lebowitz [10] and Wieand [32, 33], in the eigenvalue
counting function.

We also obtain a central limit theorem for Zhin a Sobolev space of generalised
functions on the unit circle. In this limiting regime, lower-order terms which reflect
the global covariance structure are no longer negligible and feature in the covariance
structure of the limiting Gaussian measure. The limiting process is nbs(m). It is,
however, when integrated, Hélder continuous with paramete# 1for anys > 0.

Large deviations results for A/ A, evaluated at a finite set of distinct points, are
obtained forv/In N <« A <« In N. For higher-order scalings we obtain large deviations
results for InZ / A evaluated at a single point. For the imaginary part, all scalings N

1 Perhaps we should warn the reader at this point that some authors use the term “standard complex normal”
to refer to the case where the variance of each componey2is 1
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lead to quadratic rate functions. At= N, the speed iv2, and the rate function is a
convex function for which we give an explicit formula. For the real part, only scalings
uptoA = In N lead to quadratic rate functions. At this critical scaling one observes a
phase transition, and beyond it deviations to the left and right occur at different speeds.
For deviations to the left, the rate function becomes linear; for deviations to the right,
the rate function remains quadratic up to but not including the scalirg N. At the
scalingA = N, deviations to the left occur at spedd while deviations to the right
occur at speed/?, and the rate function is again a convex function for which we give an
explicit formula. The phase transition reflects a switch from global to local conspiracy.
Related fluctuation theorems for random matrices can be found in [10,13,12,19, 14,
27]andreferencestherein. In particular, Diaconis and Evans [12] give an alternative proof
of Theorem 2.2 below. The large deviation results at spéédre partially consistent
with (but do not follow from) a higher-level large deviation principle due to Hiai and
Petz [16]. High-level large deviations results and concentration inequalities for other
ensembles can be found in [5,6,15].

2. Fluctuation Results

Ourfirstmainresultis that the law of In(0) obtained by averaging over the unitary group
is asymptotically the same as the value distribution df (6) obtained by averaging
overo for a typical realisation ot/:

Theorem 2.1. Set Wy (9) = In Z(0) /o, and denote by m the uniform probability mea-
sure on T (so that m(d9) = do/2x). AS N — oo, the sequence of laws m o ngl
converges weakly in probability to a standard complex hormal variable.

This will follow from Theorem 2.2 below, so we defer the proof.

Theorem 2.1 hints at the possibility that theange in (1.5) can be significantly
reduced.

The characteristic polynomial can also be used to explain the mysterious “white noise”
process which appears in recent work of Wieand [32,33] on the counting function (and
less explicitly in earlier work of Costin and Lebowitz [10]) @aussian processis defined
to be a collection of real (complex) random variabi&g«), « € I}, with the property
that, for anyay, ... , a, the joint distribution ofX («1), ... , X («,) is multivariate
(complex) normal. Forr < s <t < m, letCy (s, t) denote the number of eigenangles
of U that lie in the intervals, t). Wieand proves that the finite dimensional distributions
of the procesg& y defined by

Cn(s,t) —(t—s)N/2m
1 /3inN

converge to those of a Gaussian proagsghich can be realised in the following way: let
Y be a centered Gaussian process index€et] th covariance functiof£Y (s)Y (t) =
1,—; (where 1is the indicator function) and s€t(s, r) = Y (¢) — Y(s). What is the
origin of this procesg? The answer is as follows. First, it is not hard to show that for
eachn,

Cn(s.1) = (2.1)

Cn(s, 1) = Yn(t) — Yn(s), (2.2)
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whereYy () = JmIn Z(0)/o. This follows from the identity

t 1 : 1 :
Nigesn) = 7‘? + —Jmin(l - et 070y — —Jmin(l - 0y, (2.3)

where, as always, the principal branch of the logarithm is chosen as in (1.4).
Moreover:

Theorem 2.2. St Wy (0) =InZ(@)/o. Ifry, ..., r, € T aredistinct, the joint law of
(Wn(r), ..., Wy (r)) convergesas N — oo tothat of ki.i.d. standard complex normal
random variables. In particular, the finite dimensional distributions of Y converge to
thoseof Y.

This suggests that the analogous extension of Selberg’s theorem (1.5) might hold for the
zeta function.

Proof. Let f be a real-valued function ih1(T), and denote by
A 27T .
fi= / f©em(do) (2.4)
0

its Fourier coefficients. Tha'™ order Toeplitz determinant with symbglis defined by

DN[f] = det(fj 1)1<ji=N- (2.5)
Heine'sidentity (see, for example, [28]) states that

N
DNIf1=E]] f 6. (2.6)
n=1

The following lemma is more general than we need here, but we record it for later
reference.

Lemma2.3. For any d(N) > lasN — oo, s,t € R with N sufficiently large such
thats; > —d(N) for all j, and r; distinct in T,

k
Eexp(Zst‘ieln Z(rj)/d +t;Imlin Z(rj)/d) (2.7)
j=1
k
~ [ Eexp(sjReln Z(r)/d + t;3mIn Z(r;)/d) (2.8)
j=1
N
~exp( W(sf +19) |- (2.9)
j=1

Proof. This follows from Heine’s identity and a result of Basor [4] on the asymptotic
behaviour of Toeplitz determinants with Fisher—Hartwig symbols. The Fisher—Hartwig
symbol we require has the form

k
fO) = [J@—e@r)@ithi@ - i=Oyei=Fi, (2.10)
j=1
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Takinga; = sj/2d andf; = —it;/2d, we have, by Heine’s identity,

k
E exp (Z siReln Z(r;)/d + t;IJmIn Z(rj)/d) = Dyl f]. (2.11)

j=1
Note that thex;’s are real and thes;’s purely imaginary. Basor [4] proves that, as
N — oo, for r; distinct,
k 2 2
Dy[f]~ E(ea. Br.ra. .. .k Bor) [[ N5, (2.12)
j=1

fora; > —1/2, where

P —(@m—PBm)(an+Pn)
E(alv ﬂlv ri, ... ,ak,ﬂk,rk)z 1_[ (1_el(rm rn))

1<m,n<k

e (2.13)
§ ﬁ G(l+aj+B)GL+a; —B))

= G(1+2a)) ’

whereG is the Barnesi-function, andarg(1 — e'"»~"»))| < zr/2. By closer inspection
of the proof given in [4] it can be seen that (2.12) holds uniformly|fof < 1/2 — 6,
and|g;| < y, for any fixeds, y > 0%. We remark that uniformity irg is worked out
carefully in [32] for the case; = 0 for eachj, and uniformity in« is discussed in [4].
The statement of the lemma follows from noting tg0, 0,71, ... ,0,0,7) =1. 0O

Settingd = % In N = o completes the proof of Theorem 2.20

Proof of Theorem2.1. SetXy (0) = Reln Z(©) /o, Yn(0) = ImIn Z(®) /o and

N (s, 1) = / exp(s Xy () + tYy () m(do). (2.14)
T

By the central limit theorem derived in [21] (which we note, in passing, also follows
from Theorem 2.2),

Epn (s, 1) = Eexp(s Xy (0) + 1Yy (0) — & +/2, (2.15)
We also have

E¢N(s,t)2=fEeXp(sXN(9)+tYN(9)+sXN(0)+tYN(0))m(d9). (2.16)
T

By Cauchy—Schwartz, the integrand is bounded above by

sup Eexp(2s Xy (0) + 2tYn (0)), (2.17)
N>No

2 This was pointed out to us by Harold Widom.
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where Ng is chosen such thats2> —a (Ng). Thus, by Theorem 2.2 and the bounded
convergence theorem,

Egn(s,1)% — &+, (2.18)
and hence
P(jpy (s, 1) — e HI/2] 5 ) < Var gy (s, 1) /€2 — 0, (2.19)

for anye > 0, by Chebyshev’s inequality. Thus, for eagh, the sequencey (s, t)
converges in probability te*+12/2, The result now follows from the fact that moment
generating functions are convergence-determinirmg.

We note that Szegd’s asymptotic formula for Toeplitz determinants does not apply in
the above context. Szegd’s theorem for real-valued functions states that if

Ahy =Y klhg|? < oo, (2.20)
k=1
then
Dyle"] = exp(zvﬁo +A(h) + 0(1)) (2.21)

asN — oo. Combining this with Heine’s identity, we see thakif = 0 andA (k) < oo,
then Trk(U) is asymptotically normal with zero mean and varianeg/2). Now, we
can writeSReln Z(0) = Trh(U), whereh(r) = Reln(1 — =), but the Fourier
coefficientshy are of order 1k in this case and\ (k) = +oo.

We can, however, apply Szegd's theorem to obtain a functional central limit theorem
for In Z. Actually, we will use the following fact, due to Diaconis and Shahshahani[13],
which can be deduced from Szegé’s theorem.

Lemma 2.4. For each [, the collection of random variables

2 ‘
!\/:TrU‘J,j=1,...,l (2.22)
J

convergesin distribution to a collection of i.i.d. standard complex normal random vari-
ables.

(Infact, it is shown in [13] that there is exact agreement of moments up to high order for
eachN. See also [18], where superexponential rates of convergence are established.)

Denote byH( the space of generalised real-valued functignsn T with fo=0
and

o]

IFIG =Y kI fl? =2 k| fil? < oo (2.23)

k=—o00 k=1

This is a Hilbert space with the inner product

(f.8da= Y IkI*fig}. (2.24)

k=—o00
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It is also a closed subspace of the Sobolev sgéewhich is defined similarly but

without the restrictionfp = 0. Sobolev spaces have the following useful property: the
unit ball in H* is compact inH”, whenevew > b. It follows that the unit ball inHg is

compact inHé’ for a > b. We shall make use of this fact later. Note that, wheg 0,
(-, -)q is just the usual inner product dip(T); in this case we will drop the subscript.

Fix a < 0, and define a Gaussian measur@n Hj x Hy as follows. First, let
X1, X2, ... be asequence of i.i.d. standard complex normal random variafjes,0
andX_; = X}, and define a random elemefite H{ by

_ - Xk iko
F(@)_kz (—wm)e . (2.25)

=—00

(To see that' € HY, note that in facE||F||§ < oo fora < 0.) Now defineu to be the
law of (F, AF), whereA is the Hilbert transform orﬂo_l/z:

Afy = Sif k<o (2.26)

— {ifk k>0
We will describe some properties aflater. First we will prove:

Theorem 2.5. Thelaw of (RReln Z, JmIn Z) converges weakly to p.

Proof. First note thaimIn Z = A(eln Z) and, fork # 0,

_ _Trut
nz) = — 2 2.27
(9% : )k 20| (2.27)

Convergence on cylinder sets (in the Fourier representation) therefore follows from
Lemma 2.4.

To prove tightness iflg x HE we will use the fact that the unit ball iH? is compact
in H§ fora < b < 0, and the uniform bound

E|%eln Z||2 = ZEikZb \(m)

(2.28)
J
k=1
1 o0
=5 > KPR Tru R (2.29)
k=1
1 (o0}
=5 > kP 2 minck, N) (2.30)
k=1

1 o
2b—1.
<3 k}_ljk ; (2.31)
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a similar bound holds foFm In Z. We have used the fact th@t Tr U¥|2 = min(|k|, N)
for k £ 0 (see, for example, [25]). Thus,

sbJpP(mamliReln Zllp, 19mIn Z|[p} > q) (2.32)
< s}lep{]P’(Hi)%eln Zllp > q@) + P(|TmIn Z||, > q)} (2.33)
< s}lVJp{EHS%eIn Z|2 + E||FmIn zn,%]/q2 (2.34)
50 (2.35)

asqg — oo, So we are done.

We will now discuss some properties of the limiting measuréet (F, AF) be a
realisation ofu. First note that” andA F have the same law. Recalling the construction
of F, we note that fok > 0 the random variable|sl3k|2 are independent andy|? is
exponentially distributed with meary4k. It follows that || F||, < oo if, and only if,

a < 0. In particular,F' is almost surely not ir.>(T).

Nevertheless, we can characterise the law dify stating that, forf € chl/z,
2(f, F)/ N fll-1/2 (2.36)
is a standard normal random variable. The covariance is given by
E(f, F) (g, F) = %(f»g)—l/z. (2.37)
We note that
fglz==2 [ Inle" —If@)5@) m@pmc).  (@238)

In the language of potential theory, ff is a charge distribution, the|hf||§1/2 is the

logarithmic energy of f. The logarithmic energy functional also shows up as a large

deviation rate function for the sequence of eigenvalue distributions: see Sect. 3.5 below.
We can also write down a stochastic integral representation for the prBcésse

set

[
S(¢) = / F(6)ds, (2.39)
thensS has the same law as
- 1 21
S(¢) = 2—/ b(¢ —6)dB(9), (2.40)
7 Jo
whereB is a standard Brownian motion and
1 o0
b(O) = — > k%2 cogko). 2.41
®) = 7= kZ:l S(k6) (2.41)
To see this, compare covariances using the identity
1 H t |2 1 & 1-— cogki)
o — =— = - . (2.42)
2 AR S

Finally, we observe:
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Lemma 2.6. Let § > 0. The process S has a modification which isalmost surely Holder
continuous with parameter 1 — §.

Proof. This follows from Kolmogorov's criterion (see, for example, [26, Theorem 2.1])
and the fact that

2

1 t

E|S(t) — S(0)|> = 2 H Loy — o (2.43)

T l—1/2

1 & 1-— cogkt)
=13 > —a (2.44)

k=1
1

~ —Wtzlnt, (2.45)

ast — O%. To see that this asymptotic formula is valid, one can use the fact that the
expression (2.44) is related to Claussen’s integral (see, for example, [1, §2718]).

We conclude this section with two remarks on Theorem 2.5. First, Rains [25] showed
that, for eacl® # 0,

Var Cy(0,0) = n_lz (InN +y +1+1n|2sin6/2)]) + o(), (2.46)

whereCy (0, 6) is the number of eigenangles lying in the inter¢@l ). Comparing
this with (2.2) we see that

1
EJmInZ(©®)ImIn Z(0) = —5 In[2sin(0/2)| + o(1). (2.47)
This is consistent with the fact that (formally)
1 :
EF(0)F(0) = -5 In|25sin@/2)|. (2.48)

The formal identity (2.48) in fact contains all of the information needed to determine
the covariance structure of the procdasThe fluctuation theorem (2.5) is therefore a
statement which contains information about the global covariance structur& of re
covariance (2.47) is too small to feature in the scaling of Theorem 2.2.

Finally, the following observation arose in discussions with Marc Yor. The process
F also appears in the following context. Lete a standard complex Brownian motion,
and f : C — R defined byf(z) = h(argz)s(|z| = 1) for someh : T — R with
ho = 0. Then, as — oo,

1
m/Int

This can be deduced from a result of Kasahara and Kotani given in [20].

/ " F(Byyds = (h, F). (2.49)
0
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3. Large Deviations

In this section we present large and moderate deviations results ZgojnWe begin
with a quick review of one-dimensional large deviation theory (see, for example, [8,
11]).

We are concerned with the log-asymptotics of the probability distribution of
Ry/A(N), where Ry is some one-dimensional real random variable ard/) is a
scaling that is much greater than the square root of the variang (o we are outside
the regime of the central limit theorem).

Suppose that there exists a functiBV) (which tends to infinity a3v — o0), such

that
1 B(N
V) InIEexp(A ( )RN) (3.2)

A = lim AN

N—o00

exists as an extended real number, for eadfie. the pointwise limit exists in the
extended reals). Theffective domain of A(-) is the set

D={AeR:A) < o0} (3.2)
and its interior is denoted i®°. Theconvex dual of A(-) is given by

A*(x) = supiix — A(L)}). (3.3)
reR

Theorem 3.1. For a < b, if A() isdifferentiable in D° and if

(a,b) C{A' (1) : x € D°), (3.4)
then
. 1 Ry _ . «
Nlinoo BV InP { AN € (a, b)} = _xel(rlf,b)A (x). (3.5)

If (3.5) holds we say thaRy /A(N) satisfies thearge deviation principle (LDP) with
speedB(N) and rate functiom\*.

Some partial moderate deviations results can be obtained using Lemma 2.3; how-
ever, for many of the results presented here we will need more detailed information. In
particular, we will make use of the following explicit formula (see, for example, [2,7,
21)):

Eexp(sPReln Z(©) + tImIn Z(6))
G +5/2+i1/2G(1+5/2—i1/2G(L+ N)G(1+ N +5)
 GA+N+5/24+it/2GA+ N +5/2—it/2)G(1+5)

. (3.6)

valid for Re(s + ir) > —1, whereG(-) is the BarnesG-function, described in Ap-
pendix A. We will find the single moment generating functions useful, which we record
here as

My (s) := Eexp(sReln Z(0)) (3.7)
_ G%(1435) GIN+1G(N +1+5)
T GA+9)GA(N+1+3s)

: (3.8)
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and
Ly (t) := EexpitIJmIn Z(0)) (3.9)
G(1+3)G6(1-3)G2WN+1)
T GIN+1+ING(N+1-0) (3.10)
Theorem 3.2. For any A(N) > InN,anda < b < 0,
J@milnp{w € (a,b)} =b. (3.11)
Also, for anya < b < —1/2,
Nli_r)nooﬁlnlp{% € (a,b)} =b+1/4 (3.12)
Proof. From Theorem 3.9 we have that if imspp , x/In N < —1/2, then
p(x) ~ e exp(3¢/(=1) + 5In2— 3 Inx) N4, (3.13)

wherep(x) is the probability density function éRe In Z(0).
Therefore, fou < b < —1/2,

Reln Z(0) [N
P{W € (a,b)} = /aInN p(x) dx

~exp(3 (-1 + N2 - dinx) NVE(N' - N7)  (3.14)

and the result follows from taking logarithms of both sides. Similarly46N) > In N
witha <b < 0. O

3.1. Large deviations at the scaling A = N. SinceRelnZ(0) < NIn2 and
|JmIn Z(0)| < Nx/2, the scalingA = N is the maximal non-trivial scaling.

Theorem 3.3. The sequence 9ieIn Z(0)/N satisfies the LDP with speed N2 and rate
function given by the convex dual of

Als) = 1A+ 5)2In(A+5) — (14 1) (1+ 15) — 1225 fors > 0
(0. @]

fors < 0.
(3.15)

Proof. InEexp(s NReln Z(0)) = In My (Ns), the asymptotics of which are given in
Appendix C, and so

A(s) = Nlinoo % InMy(Ns) (3.16)

=11 +9%INA+5) — (1+ 35)%In (14 Ls) — 3s2In 2s (3.17)

fors > 0, andA(s) = oo fors < 0.

If x > 0,then Theorem 3.1 implies that the rate functibfx,), is given by the convex
dual of A(s). If x < 0, then Theorem 3.2 implies thatx) = 0. Thus forx € R, I(x)
is given by the convex dual af (s), and this completes the proof of Theorem 3.81
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One can also obtain an LDP for the imaginary part:
Theorem 3.4. The sequence Jm In Z(0)/N satisfies the LDP with speed N2 and rate
function given by the convex dual of

4 1
A(r) = 3%In <1-|— t_2> —1n (1-|— %tz) +1 arctan(it) . (3.18)

Proof. INEexp(t NJmlIn Z(0)) = In Ly(—iNt), and the asymptotics (given in Ap-
pendix D) imply that

. 1 .
A@ = lim 5 InLy(=iND) (3.19)

4 1
1.2 1 1.2
=5t“In (1+ t—2> —3In (1+ It ) +tarctan(§t) (3.20)

Theorem 3.1 implies that(y), the rate function, is given by the convex dual/oft),
forally e R. O

3.2. Moderate Deviations. At other scalings, one finds that the rate function is either
quadratic or linear.

Theorem 3.5. For scalings +/InN « A <« N, the sequence fReln Z(0)/A satisfies
the LDP with speed B = —A2/W_1(—A/N) (where W_1 is Lambert’s W-function,
described in Appendix B) and rate function given by

x2 if VINN <« A< InN
x?2 x>-1/2 .
I =] -x—1/4 x <12 TA=INN (3.21)
2
X x>0 .
0 v =0 ifInN < A<KN.

Proof. For a given scaling sequengéN) we wish to findB(N) such that
.1
Nlinoo 3 InMy(sB/A) (3.22)

exists as a non-trivial pointwise limit.
For x(N) > 1 asN — oo, we have for each,

1 12Nty o (M2 it N -1
SInMysN/y) = |3 B T (7") ' s/x > (3.23)
B 00 if Ns/x <-1
which follows from results summarized in Appendix C.
Therefore a non-trivial limit of (3.22) occursf = N2In x /x2, wherex = NA/B,

that is, if

A2
B= ——m— . 3.24
W) (824
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Note that the restrictioly — oo impliesA « N, and that the restriction th#& — oo

impliesA > +/InN.
If we sets = liminf y_. %, then we have

As) = lim % In My (sB/A) (3.25)

1.2 _
_{4s fors > —§ (3.26)
00 fors < —§.
If VINN « A < InN thens = +oco and Theorem 3.1 implies thé(x) = x2 for all
x € R.

If A=InN,thens =1/2, and Theorem 3.1 applies only for> —1/2, where we
havel (x) = x2. However, since8 ~ In N at this scaling, Theorem 3.2 implies that, for
x < =1/2,1(x) = |x| — 1/4.

Finally, if INN < A < N, thens = 0, and/ (x) = x2 for x > 0 by Theorem 3.1
and! (x) = 0 forx < 0 by Theorem 3.2 (sinc8 > A for A > In N).

This completes the proof of Theorem 3.5

Remark. Forall/In N <« A <« N it turns out that (x) is the convex dual oA (s).

Once again, a similar result is true for the imaginary part, but this time the rate
function is always quadratic.

Theorem 3.6. For scalings+/In N < A < N, the sequence Jm In Z(0)/ A satisfiesthe
LDP with speed B = —A2/W_1(—A/N) and rate function J (y) = y2.

Proof. For a given scaling sequendégN) we wish to findB(N) such that

1
lim —InLy(—itB/A 3.27
Jim —InLy(~itB/A) (3.27)
exists as a non-trivial pointwise limit. Applying results from Appendix D we have
In N?
In Ly(—itB/A) = 2N —% 1 0, <—2) (3.28)
X X

forallz € R.

So, as in the proof of Theorem 3.5, we ngtb be as in (3.24) (which will be valid
for v/InN <« A <« N), and the rate function will be given by the convex dua%@?,
ie.J(y)=y2. O

3.3. Large deviations of In Z(0) evaluated at distinct points.

Theorem 3.7. For v/InN <« A < In N, and for any r1, ... , r (distinct), the sequence
(Reln Z(r1)/A, ImIn Z(r) /A, ... ,Reln Z(re) /A, TmIn Z(ri) /A) (3.29)

satisfies the LDP in (R?)* with speed B = A2/ In N and rate function

k
TG y1o. o X ) = x5+ 32, (3.30)
=1
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Proof. By Theorem 2.3,ifB/A « 1,

k
InE exp (Z sj%Reln Z(rj)B/A +t;JmlIn Z(rj)B/A)
j=1

N 2|
- (Z(sf.ﬂ]?)m) B AZN . (331

j=1

so choosing the speegtl= A2/ In N, the stated result follows from a multidimensional
analogue of Theorem 3.1 (see, for example, [11]).

Remark. If B is given by (3.24), then fot/InN < A < InN, B ~ ,%. So forA in
this restricted range, this theorem generalizes Theorems 3.5 and 3.6.

From this we can deduce large deviations results for the counting function, using the
identity (2.2). For example:

Theorem38. For vVInNN €« A <« InN,and -7 < s <t <
(Cn(s,t) — (t — s)N/2m)/A satisfies the LDP in R with speed B
rate function L(x) = 72x2/2.

7, the sequence
= A?%/InN and

3.4. Refined large deviations estimates. By Fourier inversion, the probability density of
PReln Z(0) is given by

1 [ _.
p(x) = E,/ e_l}'xMN(l.y) dy, (332)
—00

whereMy (iy) = Ee'YR¢In 20 js given by (3.8).
Theorem 3.9. If Imsupy_, ., x/INN < —1/2, then
p(x) ~ e exp(3¢/(=1) + &In2— Linx) NY4, (3.33)

Proof. We evaluate

1 / e Y My (iy) dy, (3.34)
21 C

whereC is the rectangle with verticesR, R, R +i + €i, —R + i + €i, for € a fixed
real number subjectto & € < 1, and letR — oo. Note that the contour encloses only
the simple pole ap = i.

The asymptotics fot; (x) show that the integral on the sides of the contour vanish
asM — oo, which means

p(x) =i Re‘s{e_"yxMN(iy)} VE, (3.35)
y=i
where
eXtex 0 .
E = / e Myt —1—€)dr. (3.36)
2t J o



Characteristic Polynomial of Random Unitary Matrix 443

It is not hard to show that

i Re‘sie_"yxMN(iy)} ~ e exp(3¢/ (1) + & In2— Linx) N4, (3.37)
y=i
and
ex+fx 00
|E| < / My (it —1—e€)|dr (3.38)
2r J_o
2/1 1
G (2 - 26) N1/4+e/2+52/4(|n N)—1/2. (3.39)
VT | G(=e)

Thus|E| <« ¢* N4 when
FENIZHE/A(n Ny Y2 1, (3.40)

Thus the error term can be made subdominant if

X 1
imsup—— < —= 3.41
N_prlnfv = 2 ( )
by choosing
0 < ¢ < min {—2 — 4limsup—— |, 1} , (3.42)
N—o0 In N

which completes the proof of the theorenta

Remark. Forx < O, it is possible to extend the above argument to include all poles,
by integrating over the rectangle with vertice®, R, R + iR, —R + iR, and letting
R — oo in order to show that

o
p(x) = Ze@*lﬂ Reos{e’”MN(s —(2n - 1))}. (3.43)
n=1 =
The problem with this evaluation @f(x) is that it is hard to evaluate the residues of the

non-simple poles in the sum, and when one does so the sum is asymptafja(ity
forx < —InN.

Using Appendix C on the asymptotics &fy (7), the saddle point method gives
e Forjx| < InN,
2

1 —X
PO N T I exP(m) (3-44)

(This result was first found in [21] for = O(+/In N) —the central limit theorem.)
e ForinN < x < NY3, writing W for W_y (— ),

1 —x2 x2
p(x) ~ 7 exp(m + oz SIn(=w) — Hlnx + 5In2+ ;“’(—1)) .

(3.45)
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The probability density ofm In Z(0) is given by
1 [ _
a0 =5 [ Lum & (3.46)
2

—00

which we note is an even function.
Applying the results from Appendix D to calculafgy (s), the saddle point method
gives

o Forjx|] <« InN

2

1 —X
Y S Fa] exlo(ln N+1+ y) '

(3.47)

e ForinN < |x| < v/N, writing W for W_1 (%),

2 2

1 X ,
q(x) ~ T exp( W + w2~ 1 3IN(=W) — %h’]x + 2¢ (—l)) . (3.48)

3.5. Inside thecircle. The sequence of spectral measures
1 N
== 4 3.49
vy (3.49)

satisfies the LDP i1 (T) with speedV? and good convex rate function given by the
logarithmic energy functional

2w p2r1 ) )
) = _/ / In le'* — e [u(ds)v(dr). (3.50)
0 0

For a proof of this fact, see [16].
In this context, Varadhan’s lemma (see, for example, [11]) can be stated as follows.

Theorem 3.10. For any continuous ¢ : M1(T) — R satisfying the condition

lim sup— L E V00 < oo (3.51)
N—o0 N
for some 1 > 1, then
lim —InEeN PN = sup {p(v) — =(v)}. (3.52)
N—oo N2 veM1(T)

Now, we can writeéReln Z(0)/N = Fo(Sy), where

271 .
Fo(v) := / Reln (1 - e’e) v(d); (3.53)
0
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however, Fy is not weakly continuous, and Varadhan’s lemma does not apply. Never-
theless, it is interesting to see if it gives the correct answer. That is, does the asymptotic
cumulant generating function of Theorem 3.3 satisfy

A(s) = sup {sFo(v) —X(v)}? (3.54)
veM(T)

If s0, this variational formula would contain information about how large deviations for
PReln Z(0)/N actually occur. A similar variational problem can be written down for the
imaginary part. Unfortunately, we are not able to even formally verify this except in very
restricted and degenerate cases.
Consider first, foe > 0, thecontinuous function
2 )
F.():= [ %eln (1 - e*e’@) 1(d6). (3.55)
0

ThenfReln Z./N = F.(Sy), where

N
Ze = 1_[ (1 — e_eeie") . (3.56)
n=1
Applying Varadhan’s lemma, we obtain

. 1 i
Ac(s) = NIE’IOO V2 In EeVsPtelnZo)

= sup {sF.(v) —XZW)}.
veM1(T)

Itis possible to solve this variational probleminthe restricted rargje-1 < s < e€—1,
where we obtain:

Ac(s) = 25%In (1_—1626) . (3.57)

Outside this range, it is much harder to solve.

Note that, lettinge — 0, we formally obtainA(s) = oo for —2 < s < 0, which
agrees (in this very restricted range) with thé) of Theorem 3.3.

Similarly, for

27 .
Ge :=f Jmlin (1—6_66’0) v(do), (3.58)
0
we get that foljz| < e€ — e7¢,
N—oo

. 1 1
lim m In ]EeNt:imIn Ze = %tz In (m) s (3.59)

so lettinge — 0 all we could possibly obtain i& (0) = 0.

In both cases, the problem (of extendingnds beyond the ranges given) comes
from finding the maximum over the set of abn-negative functions; only within the
ranges given does the infimiser lie away from the boundary of this set.
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Finally, we remark that

6 o~ —e
o€t} — k0,
meln(1 e ) ; TR (3.60)
%#0
and
. oIkl
JmIn (1—6—%'971): € iktn, (3.61)
2k
k=—o00
k#0

S0 Szegd's theorem implies that bétha In Z. andJm In Z, converges in distribution to
normal random variables, with mean 0 and varianc%dn (1 - e—ze)_ Note the lack of

+/In N normalization, as required in the case- 0.

3.6. The phase transition. The phase transition of Theorem 3.5 can be understood in
terms of how deviations to the left for the real part actually occur, given that they do
occur: here we present some heuristic arguments.

Forv/InNN « A < InN andB = A?/In N, we have £ > 0)

% INP(MReln Z(0) < —xA) ~ —x2. (3.62)
On the other hand, it > In N,

%In P(Reln Z(0) < —xA) ~ —x. (3.63)
Fix ¢ > 0 and consider the lower bound

P(Reln Z(0) < —xA)

N
>P (In 11— e < —(x + €)A, Zln 11— e < eA). (3.64)
n=2

Assuming the two events on the right hand side are approximately independent, and
using the facts that; is uniformly distributed oril and

N
P (Zln 11— el < eA) -1, (3.65)

n=2
this yields, forA > In N, the lower bound

1 1 .
liminf = InP@Reln Z(0) < —xA) > liminf = InP (ln 11— e < —(x + e)A)
A N—>oco A

N—o00

(3.66)
=—(x+e); (3.67)
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sincee is arbitrary, we obtain
!
liminf —INP(Reln Z(0) < —xA) > —x. (3.68)
N—ooo A
On the other hand, i¥/In N « A « In N, the same estimate leads to
o1
liminf —InP(MReln Z(0) < —xA) > —o0. (3.69)
N—>oco B

The fact that this simple estimate gives the right answer whep In N, suggests
that if the deviation

{Reln Z(0) < —xA} (3.70)

occurs, it occurs simply because there is an eigenvalue too close to 1 (the other eigen-
values are “free to follow their average behaviour”). This is what we meanlbgah
conspiracy.

The fact that it leads to a gross underestimate wWitmN <« A < In N, suggests
thatin this case the deviation mustinvolve the cooperation of many eigenvalues. A similar
estimate based on only a (fixed) finite number of eigenvalues deviating from their mean
behaviour leads to a similarly gross underestimate. Clearly it is more efficient in this
case for many eigenvalues to arrange themselves and “share the load”, so to speak, than
it is for one to bear it alone.

A. Barnes G-Function

Barnes'G-function is defined [3] for alt by

—12

G(z+1) = (20)? exp(—% <z2 2+ z)) (1+ 2) T2 (A)

1

n

wherey = 0.5772. .. is Euler’s constant.
The G-function has the following properties [3,30]:

Recurrence relatiorG(z + 1) = I'(2)G(2).
Complex conjugationG*(z) = G(z*).
Asymptotic formula, valid folz| — oo with | arg(z)| < ,

1
InG(z+1)NZZ(%Inz—%)—f-%zann—%Zlnz+§’(—1)+0<z). A.2)

Taylor expansion fofz| < 1,
oo Zn
ING@z+1) =327 —Dz— 30+ 12+ (D" ;- H—. (A3
n=3

Special valuesG (1) = 1 andG(1/2) = ¢3¢ (-1/2~1/471/24
G(z +1) has zeros at = —n of ordern, wheren = 1,2, ....
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Logarithmic differentiation can be written in terms of the polygamma functions,
(),

dn+1 i
aoit ING(z) = " (z) (A.4)
and
O () = % In27r —z + % +(z—=1puO). (A.5)

See, for example, [1] for properties of the gamma and polygamma functions.

B. Lambert’s W-Function

The LambertW-function (sometimes called the Omega function) is defined to be the
solution of

W(x)e"® = x. (B.1)

It has a branch point at = 0, and is double real-valued fere1 < x < 0.

The unigue branch that is analytic at the origin is called the principal branch. It is
real in the domain-e~1 < x < oo, with a range—1 to co. The second real branch is
referred to as the-1 branch, denoteW_. Itis real in the domair-¢~1 < x < 0, with
arange—oo to —1.

The equation

Inx = vx?f (B.2)
has solution
x = exp(@) . (B.3)

There are various asymptotic expansions of the W function:
o Asx — oo,

Inlnx

Wo(x) ~Inx —Inlnx + " (B.4)
e Asx — 0 on the principal branch,
Wo(x) ~ x —x° + %x3. (B.5)
e Asx — 0~ onthe—1 branch,
W_106) ~ In x| — In I x| - 0] (B.6)

Injx| °
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C. Asymptoticsof In My (x)
From the asymptotics for thé-function, (A.2), we have fox > —1,
InMy(x) =2InG (1+ 3x) —InGA+x) — 3x* + 3N%InN
+ (N +x)?In(N +x) — (N + %x)z'” (N + 3x) (C.1)
+3In(N+3x) - lizln(N—i—x)—lizlnN—i—O(%),

where the error term is independentxwof
This may be simplified if we assume thaiV) is restricted to various regimes:

If |x] < 1, then

InMy(x) = 22NN +14y) + 0 <x3) 0 <%> . (C.2)

If x = 0(1) andx > —1, then

1
InMy(x) = 3x*INN +2InG (1+ 3x) —-ING(L+x) + O (ﬁ> . (C3)

If1 <« x < <N, then

INMy@x) = 3x2(InN —Inx —=In2+3) + tin2- Linx +¢'(-1)

+0 (%) +0 (%) . c4)

o If x = AN with A = O(1) andX > 0, then
In My @) =N {3A+ 0@+ 0 - (1+$) I (1+ $3)
~32n@n} - SN - i+ D (C.5)

1
+%In(2+x)—lizln(1+k)+0<ﬁ>.

D. Asymptoticsof In Ly (ix)
We consider: € R. From the asymptotics for th&-function, (A.2), we have
INLy(ix) = ING (1+ 2ix) +InG (1 - 3ix) — 3x* + N2InN
—3(V+3i0) I (N + 3ix) = 3 (N = 3ix)*In (N - 3ix) 1
1

—%InN—i—lizIn(N—l—%ix)—i—lizln(N—%ix)+0<ﬁ>.
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Constrainingc(N) to lie in various regimes simplifies the above considerably:

o If |x| < 1, then
: 1.2 4 1
InLy(ix) =zx°UnN +1+y)+ Ox )—i—O(N). (D.2)
o If x = O(1), then
. 1. 1. 1.2 1
INLy(@ix) =InG (14 3ix) +InG (1— 3ix) + 3x°INN + O (ﬁ) . (D.3)
o If1 < |x| < /N, then
INLy(Gx) = 2x2(InNN —Inx+In2+3) = Linx + FIn2+2¢'(-1)
x4 1 (D.4)
+o(3z)+0 =)
o If x = AN with A = O(1), then

In Ly(ix) = N2 {210 (1+4372) = §In (14 $52) + 2tan* §2 )
1 1 -2 / 1 (B:5)
—inN+ i (1+472) 42 (_1)+0<N>'
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