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Abstract

We establish a central limit theorem for the logarithm of the characteristic polynomial of a
random permutation matrix. We relate this result to a central limit theorem of Wieand for the
counting function for the eigenvalues lying in some interval on the unit circle. c© 2000 Elsevier
Science B.V. All rights reserved.
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1. Introduction and summary

The spectral properties of random matrices have received a lot of attention in recent
years, and this is largely due to the striking (statistical) similarity between eigenvalue
distributions of certain random matrices and the distribution of the zeros of the Riemann
zeta function along the critical line. This similarity was �rst observed by Montgomery
(1973) (through conversations with Freeman Dyson in the early 1970s) and has since
been supported by various numerical and analytic results (see, for example, Odlyzko,
1987; Rudnick and Sarnak, 1994; Bogomolny and Keating, 1996). Most of this work
has focused on random matrices with continuous distributions, such as Haar measure
on the unitary group (the CUE ensemble) or random hermitian matrices with complex
iid Gaussian entries (the GUE ensemble). The discrete analogue of the unitary group is
the symmetric group. The spectrum of a permutation matrix is completely determined
by the cycle structure of the corresponding permutation, and the cycle structure of
random permutations is very well understood. In both cases all of the eigenvalues lie
on the unit circle. One might expect the spectrum of a random permutation matrix to
look very di�erent from that of a random unitary matrix, and indeed it does, but in
many respects it is surprisingly similar. This was �rst observed in the Ph.D. Thesis
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of Wieand (1998) (see also Wieand, 1999) where it is shown that the order of the

uctuations for the number of eigenvalues in a (nice) subset of the circle is the same
as in the unitary case. 1 The main result of this paper is that a similar statement is
true for values of the characteristic polynomial.
The characteristic polynomial of a random unitary matrix was �rst studied by Keating

and Snaith (2000). They propose a renormalized version of this random polynomial as
a model for the Riemann zeta function along the critical line. They also prove a central
theorem for the value distribution of the polynomial which is consistent with Selberg’s
central limit theorem for the value distribution of the Riemann zeta function along the
critical line (see, for example, Laurin�cikas, 1996). In order to state the theorem of
Keating and Snaith, and the results of this paper, we need to introduce some notation.
For an n× n matrix U let

�U (s) = det (U − sI)
denote the characteristic polynomial and set

�U (s) = det
(
I − 1

s
U
)
=
(
−1
s

)n
�U (s):

We denote the restriction of �U to the unit circle by

ZU (�) = �(ei�) (06�¡ 2�):

Note that �U and �U have the same zeros, and �U (s) → 1 as s → ∞. This allows us
to choose a canonical branch of log �U (s) as follows. A branch of the log function can
only be de�ned in a simply connected domain that does not include 0, so for each of
the n zeros of Z (eigenvalues) we cut the complex plane from 0 to this value. We
then choose the branch of log �U (s) of the rest of the plane which converges to zero
as s→ ∞. We use this to de�ne a function on the unit circle:

LU (�) =

{
log ZU (�) where de�ned;

0 otherwise:

Keating and Snaith (2000) prove the following central limit theorem.

Theorem 1.1. Fix 06�¡ 2�. Let Un be a random n × n unitary matrix; chosen
according to Haar measure on the unitary group. Then both the real and imaginary
parts of

LUn(�)√
1
2 log n

converge in distribution to a standard normal random variable.

The main result of this paper is the following.

1 It is also shown in Wieand (1998) that the joint distributions for the numbers of eigenvalues in the
collections of intervals has essentially the same covariance structure as in the unitary case.
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Theorem 1.2. (i) Suppose 06�¡ 2� and �=2� is an irrational of �nite type. Let Pn
be a n× n permutation matrix; chosen uniformly at random. Then both the real and
imaginary parts of

LPn(�)√
�2
12 log n

;

converge in distribution to a standard normal random variable.
(ii) Moreover; for any irrational �=2�,

Im
LPn(�)− ELPn(�)√

�2
12 log n

converges in distribution to a standard normal random variable.

The notion of type will be explained in Section 2. Here we will simply remark that
the set of numbers which are not of �nite type has Hausdor� dimension zero.
We can relate this result to a central limit theorem of Wieand, by considering the

imaginary part of LPn . This is described in Section 4. Let X
l
n denote the number of

eigenvalues of Pn which lie in the half open subinterval of the unit circle (1; eil]. A
particular case of the main result in Wieand (1999), which we now state, follows from
a straightforward modi�cation of the proof of Theorem 1.2.

Theorem 1.3 (Wieand). If l=2� is irrational;

X ln − EX ln
( 13 log n)

1=2

converges in distribution to a standard normal random variable. If l=2� is irrational
of �nite type; then

EX ln =
nl
2� − 1

2
log n+O(1):

The outline of the paper is as follows. In Section 2 we present some preliminary
material on random permutations, uniformly distributed sequences and discrepancy. In
Section 3, we prove the main result and, in Section 4, we relate this to the counting
function X ln .

2. Preliminaries

2.1. Permutations and the Feller coupling

Given a permutation � in the symmetric group Sn the corresponding permutation
matrix is �, where �i; j = 1(�(i) = j). The permutation matrices form a subgroup of
the unitary group. A random n× n permutation matrix is the matrix of a permutation
chosen uniformly at random from Sn.
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Let � be an n-cycle and � its permutation matrix. The characteristic polynomial
of � is ��(t) = tn − 1. Suppose � ∈ Sn has cycle structure 1c12c2 : : : : Then ��(t) =
�nj=1 (t

j − 1)cj .
Let Cj(n) denote the number of cycles of length j in a random permutation of length

n. The Feller coupling, see, for example, Arratia et al. (1992), allows one to construct
independent random variables Zj on the same probability space as the Cj(n) in such a
way that Zj is Poisson with mean 1=j, and

E

∣∣∣∣∣∣
n∑
j=1

aj(Zj − Cj(n))
∣∣∣∣∣∣6

2
n+ 1

n∑
j=1

|aj|

for any complex sequence aj.

2.2. Uniformly distributed sequences and discrepancy

We need a number of results concerning uniformly distributed sequences which we
collect together here. For a real number x we will write {x} for the fractional part
of x. A real sequence (xn)∞n=1 is uniformly distributed if for all 06a¡b61 we have

lim
N→∞

|{n6N : a¡ {xn}¡b}|
N

= b− a:

Lemma 2.1. (xn) is uniformly distributed if and only if for every properly Riemann
integrable f de�ned on [0; 1] we have (1=N )

∑N
n=1 f({xn})→

∫ 1
0 f(t) dt.

Weyl’s theorem states that if � is irrational the sequence xn = {n�} is uniformly
distributed.
Let x = (xn)∞n=1 be a real sequence. For I ⊂ [0; 1] write AN (I) = |{n6N : {xn}∈ I}|.

The discrepancy (at the N th stage) is

DN (x) = sup
06a¡b61

∣∣∣∣AN ([a; b))N
− (b− a)

∣∣∣∣ :
As one would expect, DN (x)→ 0 as N → ∞ precisely when x is uniformly distributed.
For a proof of this (and other statements in this section) see Kuipers and Niederreiter
(1974). We will �nd it useful to consider a slightly restricted notion of discrepancy

D∗
N (x) = sup

0¡a61

∣∣∣∣AN ([0; a))N
− a
∣∣∣∣ :

This is equivalent (in the sense that D∗
N6DN62D

∗
N ) but has the advantage of having

a more convenient expression: if we order ({xn}}Nn=1 as y16 · · ·6yN then

D∗
N (x) = maxn6N

max
(∣∣∣yn − n

N

∣∣∣ ; ∣∣∣∣yn − n− 1
N

∣∣∣∣
)
:

The discrepancy controls the rate of convergence in Lemma 2.1. The variation of a
function f is de�ned to be V (f)=

∫ 1
0 | df(t)|, where df denotes the Lebesgue–Stieltjes

measure of f on [0; 1]. We have V (f) =
∫ 1
0 |f′(t)| dt when f is di�erentiable.
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Theorem 2.2 (Koksma’s inequality). Let f be a function on [0; 1] of bounded variation
V (f) and x = (xn)∞n=1 be a real sequence. Then∣∣∣∣∣ 1N

N∑
n=1

f({xn})−
∫ 1

0
f(t) dt

∣∣∣∣∣6V (f)D∗
n (x):

We will be interested in the discrepancy of the sequence xn={n�}, where �=�=2� is
an irrational in [0; 1]. This will depend upon the extent to which � can be approximated
by rationals.
For real � let ‖�‖ denote the distance from � to the nearest integer. The type of �

is the value of � which is the supremum of those 
 for which lim inf n
‖n�‖=0 as n
runs through the natural numbers.
This implies that if m is less than the type of � and C¿ 0 is a constant there are

an in�nite number of approximations by rationals satisfying∣∣∣∣�− p
q

∣∣∣∣6 C
qm+1

:

A simple application of the pigeonhole principle shows that any irrational has type at
least 1. It is possible that the type of � equals in�nity; if this is not the case � is of
�nite type. Roughly speaking, small type implies small discrepancy.
The set of Liouville numbers is de�ned by

L= {x ∈ R \Q: ∀n ∈ N; ∃q ∈ N: ‖qx‖¡q−n}:

It is easy to see that if a number is not of �nite type, then it is in L. It is a classical
result that L is a small set which has Hausdor� dimension 0 (Besicovitch, 1934).
For numbers of �nite type we have a strong control on their discrepancy.

Theorem 2.3. Let � have �nite type � and let xn = {n�}. Then for every �¿ 0 we
have DN (x) = O(N−(1=�)+�).

2.3. Elementary analytic results

We conclude with two elementary results.

Lemma 2.4. Let (xk)∞k=1 be a real sequence. Suppose (1=n)
∑n

k=1 xk → L. Then
(1=log n)

∑n
k=1 xk=k → L.

Finally, we record a summation by parts formula.

Lemma 2.5. Let (xk)nk=1 be a real sequence and y(t) a function with a continuous
derivative. De�ne X (t) =

∑
k6t xk . Then

n∑
k=1

xky(k) = X (n)y(n)−
∫ n

1
X (t)y′(t) dt: (2.1)
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3. Proof of the main result

In order to prove Theorem 1.2 we will consider the real and imaginary parts sepa-
rately. First, we observe that from the structure of random permutations,

LPn(�) =
n∑
j=1

Cj(n) log(1− e−ij�);

and hence

Re LPn(�) =
n∑
j=1

Cj(n) log|1− e−ij�|; (3.1)

Im LPn(�) =
n∑
j=1

Cj(n) arg(1− e−ij�): (3.2)

We now use the Feller coupling to determine a set of conditions required for the
weighted sums of cycle length random variables to have a central limit theorem.

Lemma 3.1. Let (aj)∞1 be real constants satisfying

(1) (1=n)
∑n

j=1 aj → 0;

(2) (1=
√
log n)

∑n
j=1(aj=j)→ 0;

(3) 1=n
∑n

j=1 a
k
j → Bk; for all k ¿ 1; for some constants Bk .

Let An=
∑n

j=1 ajCj(n); where; as before; Cj(n) is the number of j-cycles of a random
permutation from Sn. Then

An√
B2 log n

converges in distribution to a standard normal random variable. If conditions (1) and
(3) are satis�ed; then

An − EAn√
B2 log n

converges in distribution to a standard normal random variable.

Proof. We will use the Feller coupling described in Section 2. Consider the sum
Ãn =

∑n
j=1 ajZj where Zj are independent Poisson random variables with mean 1=j.

By hypothesis and the fact that ‖ · ‖16‖ · ‖2,

E

∣∣∣∣∣ An√
B2 log n

− Ãn√
B2 log n

∣∣∣∣∣6 2√
B2 log n


1
n

n∑
j=1

|aj|2


1=2

→ 0:

The sequences An and Ãn are thus asymptotically equivalent and we will work with
Ãn for the rest of the proof.
We consider the characteristic function

�n(t) = Eeit(Ãn=
√
log n):
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As

EeitZj = exp
(
eit − 1
j

)
;

and the Zj are independent,

�n(t) = exp


 n∑

j=1

e(aj=
√
log n)it − 1
j


 : (3.3)

We also have Taylor expansions

cos
aj√
log n

t − 1 =− a2j t
2

2 log n
+

a3j t
3

6 log3=2 n
sin �j;

sin
aj√
log n

t =
ajt√
log n

− a3j t
3

6 log3=2 n
+

a4j t
4

24 log2 n
sin!j

(for some 0¡�j; !j ¡ t when t ¿ 0). Substituting these into (3.3) we obtain

n∑
j=1

e(aj=
√
log n)it − 1
j

=


 1√

log n

n∑
j=1

aj
j


 it −


 1
2 log n

n∑
j=1

a2j
j


 t2 + In;

with

|In|¡ C1(t)

log3=2 n

n∑
j=1

|aj|3
j
+
C2(t)

log2 n

n∑
j=1

|aj|4
j
;

where C1(t); C2(t) are constants depending on t only.
Using condition (3) the error In de�ned above tends to 0, as by Lemma 2.4,

C2(t)

log2 n

n∑
j=1

|aj|4
j
=
C2(t)

log2 n

n∑
j=1

a4j
j

→ 0;

and by Cauchy–Schwarz and Lemma 2.4,

C1(t)

log3=2 n

n∑
j=1

|aj|3
j
6

C1(t)

log3=2 n


 n∑

j=1

a6j
j



1=2
 n∑

j=1

1
j



1=2

→ 0:

We deduce from conditions (1) and (2) that

lim
n→∞ �n(t) = e(−B2=2)t

2
;

as required. The second part follows from the above: under conditions (1) and (3) we
have

E exp

(
it
An − EAn√
log n

)
∼ E exp

(
it
Ãn − EÃn√
log n

)
→ e−(B2=2)t

2
;

as n→ ∞.

Proof of Main Theorem. (1) The imaginary part: We will use Lemma 3.3 with, by
(3.2), the values of the aj given by

rj = arg(1− e−ij�):
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De�ne

r(t) = arg(1− e−2�it) = (12 − t)�:
Then

∫ 1

0
r k(t) dt =




� k
2 k (k+1) ; k even;

0; k odd:

This is a proper Riemann integral, so we can apply Lemma 2.1. Together with Lemma
2.4 we have

lim
n→∞

1
log n

n∑
j=1

r kj
j
= lim
n→∞

1
n

n∑
j=1

r kj =




� k
2 k(k + 1)

; k even;

0; k odd:

Thus, we have established conditions (1) and (3) of Lemma 3.1. This completes the
proof of Theorem 1.2(ii). To complete the proof of part (i) (in the imaginary case)
we need only establish condition (2), namely that

1√
log n

n∑
j=1

rj
j
→ 0:

As the function r(t) is bounded we can use Koksma’s inequality and our estimate on
the discrepancy in Theorem 2.3 to obtain a rate of convergence for the coe�cients of
the imaginary part.

Lemma 3.2. For � of �nite type (1=n)
∑n

j=1 rj decays polynomially as n→ ∞.

To complete the proof of the �rst part of our main result we apply the summation by
parts formula (2.1) with xk = rk , y(t) = 1=t, to see that, for � of �nite type,

∑n
j=1 rj=j

remains bounded as n → ∞. Thus, in particular, 1=(√log n)∑n
j=1 rj=j → 0 giving

condition (2) of Lemma 3.1 as required.
(2) The real part: We follow the same approach as for the imaginary part. From

(3.1) the values of aj for the real part are

qj = log|1− e−ij�|:
De�ne

q(t) = log|1− e−2�it |:
This is unbounded as t tends to 0 or 1 and thus Lemma 2.1 cannot be applied directly.
We will show how to adapt the method. First we compute∫ 1

0
q(t) dt = 0;

∫ 1

0
q2(t) dt =

�2
12
:
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The higher moments
∫ 1
0 q

k(t) dt are all �nite: this follows from the fact that∫ 1

0
e�q(t) dt =

∫ 1

0
2(1− cos(2�t))�=2 dt ¡+∞

for �¿− 1.
In order to establish the conditions of Lemma 3.1 we require the following.

Lemma 3.3. For � of �nite type (1=n)
∑n

j=1 qj decays polynomially to 0 as n→ ∞.

Proof. Let xn={n�} for n ∈ N. As � has �nite type there are constants C;m¿ 0 such
that ‖n�‖¿C=nm; ∀n ∈ N. Fix N and let �=C=Nm. Order ({xn})Nn=1 as y16 · · ·6yN
and de�ne y0 = �, yN+1 = 1 − � (so y0¡yi ¡yN+1 for each 16i6N .) Recall that
q(t)=log|1−e−2�it | satis�es ∫ 10 q(t) dt=0. It is also (in�nitely) di�erentiable in the open
interval (0; 1) and satis�es q(1−t)=q(t). (The second assertion is clear geometrically.)
Consider the identity

N∑
n=0

∫ yn+1

yn

(
t − n

N

)
q′(t) dt =

∫ 1−�

�
tq′(t) dt − 1

N

N∑
n=0

n(q(yn+1)− q(yn)): (3.4)

Integration by parts gives∫ 1−�

�
tq′(t) dt = (1− �)q(1− �)− �q(�)−

∫ 1−�

�
q(t) dt

= (1− 2�)q(�) + 2
∫ �

0
q(t) dt:

Using this in (3.4), we have
N∑
n=0

∫ yn+1

yn

(
t − n

N

)
q′(t) dt = 2

(∫ �

0
q(t) dt − �q(�)

)
+
1
N

N∑
n=1

q(yn): (3.5)

As in Koksma’s inequality we can bound the modulus of the left-hand side of (3.5)
above by

D∗
N

∫ 1−�

�
|q′(t)| dt;

to deduce that∣∣∣∣∣ 1N
N∑
n=1

q({xn})
∣∣∣∣∣6D∗

N

∫ 1−�

�
|q′(t)| dt + 2

∣∣∣∣∣
∫ �

0
q(t) dt − �q(�)

∣∣∣∣∣ :
As q(t) ∼ log t as t → 0, it is not hard to see that this expression can be bounded by
C=n� for some C; �¿ 0.

Using the same method it can be shown that (1=n)
∑n

j=1 q
k
j −
∫ 1
0 q

k(t) dt also decays
polynomially to 0, for any k ¿ 1. Thus, we have conditions (1) and (3). The rate
of decay is only important in the case k = 1, where it may be used to establish
condition (2).
We may then complete the proof of the main theorem for the real case in the same

way that we did for r(t).
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Remark. A closer inspection of the proof of Theorem 1.2(i) will reveal that the �nite
type condition is actually stronger than necessary. For the imaginary part we require
DN (x) = o(1=

√
logN ). For the real part we require that there exists a function �(N )

such that DN (x) log �(N ) and �(N ) are both o(1=
√
logN ).

4. The counting function

Let U be a unitary matrix and I a subinterval of the unit circle. The counting
function XU (I) is the number of eigenvalues of U contained in I . The study of this
function for various matrix groups is the subject of Wieand (1998,1999). There is a
close relationship between the counting function and the imaginary part of LU and
this allows us to relate the results we have obtained to the counting function, and to
the results in Wieand (1998,1999).
The connection between the characteristic polynomial and the counting function can

be summarised by the following lemma. This is well known. We include a proof in
the appendix for completeness.

Lemma 4.1. Let U be a unitary matrix and I a subinterval of the unit circle whose
endpoints eit1 ; eit2 are not eigenvalues of U . Then

XU (I) =
n(t2 − t1)
2� +

1
�Im(LU (t2)− LU (t1)): (4.1)

Set X ln = XPn((1; e
il]). By Lemma 4.1, X ln = (nl=2�) + (1=�)Fln, where

Fln = Im

(
LU (l)− lim

t↓0
LU (t)

)
=

n∑
j=1

Cj(n)
(
rj − �

2

)
;

where, as before, the Cj(n) are the number of cycles of length j, and the rj =arg(1−
e−ijl) are the imaginary coe�cients for LU (l). We will apply a slightly modi�ed version
of Theorem 3:1 and take aj = rj − 1=2. Note that

1
n

n∑
j=1

rj − �
2
→ −�

2
;

1
n

n∑
j=1

(
rj − �

2

)2
→ �2
12
+
�2
4
=
�2
3
;

and the averages of the higher powers of the aj also converge to constants. This
implies that

X ln − EX ln
( 13 log n)

1=2

converges to a standard normal variable. Finally, using our previous results about the
behaviour of the rj in the case where l=2� is of �nite type, we have

1√
log n

n∑
j=1

rj − �=2
j

∼ 1√
log n


 n∑

j=1

rj
j
− �
2
log n


→ 0;
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and hence

EX ln =
nl
2� − 1

2
log n+O(1):
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Appendix A. Proof of Lemma 4.1

Recall that �U (s)=det(I − (1=s)U ). If U is n×n unitary with eigenangles �1; : : : ; �n
then

(−s)n�(s) =
n∏
k=1

(e−i�k − �s) = detU �
(
1
�s

)
:

Let � satisfy �2 = (−1)n=detU and de�ne �U (s) = �sn=2�(s). Then the functional
equation is

�U

(
1
�s

)
= �U (s): (A.1)

Remark. (1) When n is odd we have to make a choice of sn=2 in the domain we use
(which will never encircle zero).
(2) There is an intentional analogy with the Riemann zeta function, which we

mention for the sake of interest. If one de�nes

�(s) =
1
2
s(s− 1)�−s=2�

( s
2

)
�(s);

then we have the functional equation �(1− s) = �(s). This expresses the symmetry of
� under re
ection in the half line; the matrix equation expresses conjugate symmetry
of �U under inversion in the unit circle.

We use the following result of complex analysis:

Lemma A.1. Let D be a domain; f:D → C analytic and C a closed contour in
D on which f is non-zero. Then (1=2�i)

∫
C f

′(z)=f(z) dz is the number of zeros
of f inside C.

Let U be a unitary matrix and I a subinterval of the unit circle whose endpoints
eit1 ; eit2 are not eigenvalues of U . We apply this lemma to �U , which has the same zeros
as �U on the unit circle. Our contour C is the boundary of the region {reit : 126r62;
eit ∈ I}. C falls naturally into two pieces; that which is within the unit circle (Cin) and
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that which is without (Cout). Inversion in the circle takes Cin to Cout with the opposite
orientation, so applying the functional equation

XU (I) =
1
2�i

∫
C

�′U (s)
�U (s)

ds=
1
� Im

∫
Cout

�′U (s)
�U (s)

ds:

Our previous de�nition of LU (s) as a branch of log �U (s) is on a domain containing
Cout. Within this we choose a neigbourhood of Cout, a branch of log s in this neigh-
bourhood and so construct log �U (s) = log �+ (n=2)log s+ LU (s). This is an inde�nite
integral of the integrand considered above, and hence

XU (I) =
n(t2 − t1)
2� +

1
� Im(LU (t2)− LU (t1)): (A.2)

We can think of the second term on the right-hand side as the deviation of the number
of eigenvalues in I from the number you would expect if each eigenvalue was uniformly
distributed on the circle.

Remark. Suppose we �x t1 and let t2 tend to an eigenangle t. Depending on the
direction of approach the interval I will either increase to an interval that is open at eit

or decrease to an interval closed at eit . We thus have a di�erence of the multiplicity of
the eigenangle in the counting function; this corresponds to the di�erence of � between
the clockwise and anticlockwise limits of the imaginary part of LU approaching t.
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