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Abstract

We consider the hydrodynamic limit for a certain Brownian directed percolation model, and
establish uniform concentration results. In view of recent work on the connection between this
directed percolation model and eigenvalues of random matrices, our results can also be interpreted
as uniform concentration results at the process level for the largest eigenvalue of Hermitian
Brownian motion.
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1. Introduction

Let B(i) denote a sequence of independent Brownian motions in R and for t¿ 0 set

Ln(t) = sup
0=s06s16···6sn−16t

n∑
i=1

B(i)(si−1 ; si);

where B(i)(s; t) =B(i)t −B(i)s . The random variable Ln(t) can be thought of as a last-passage
time for a continuous model of directed percolation. Note that, by Brownian scaling,
Ln(t)=

√
t has the same law as Ln(1), for any t¿ 0. In Baryshnikov (2001) and Gravner

et al. (2001) it is shown that the random variable Ln(1) has the same law as the largest
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eigenvalue of a n × n GUE random matrix. It therefore follows from standard results
in random matrix theory that:

Theorem 1. For each t¿ 0, as n → ∞,
1
n
Ln(nt)→ 2

√
t;

in probability.

Our purpose in writing this paper is twofold. Firstly, we will give an alternative
proof of this limit theorem using a representation for the process Ln in terms of a
sequence of Brownian queues in tandem, and moreover obtain a sharp concentration
inequality at the process level. Our second objective is to explore the asymptotic shape
of the level sets of Ln(t) using such concentration results.
An outline of our proof of Theorem 1 was given in O’Connell and Yor (2001); it is

based on a technique introduced by SeppIalIainen (1998) which exploits a kind of convex
duality between density and speed in microscopic models for hydrodynamic systems.
(For a survey of how this technique can be applied to a range of discrete directed perco-
lation problems, see O’Connell, 1999.) To make the arguments given in O’Connell and
Yor (2001) precise, we need a strong uniform (in t) concentration result for the pro-
cess Ln, and to obtain this we appeal to the general theory of Gaussian processes. Our
main result, which we prove in Section 2, is the following reJnement of Theorem 1:

Theorem 2. There exists a sequence {	n} with 	n → 0 as n → ∞ and constants
C1; C2¿ 0 such that

P
(
sup
t¿0

∣∣∣∣ (1=n)Ln(nt)− 2
√
t

1 + t

∣∣∣∣¿y
)
6C1 exp(−C2n(y − 	n)2)

for all n; y with y¿	n.

At the cost of excluding values of t which are extremely small or extremely large
compared to n, one can prove a similar concentration inequality on a Jner scale,
replacing the denominator (1 + t) in Theorem 2 by

√
t:

Theorem 3. Let 
¡ 1 let gn = exp(exp n
). Then there exists a sequence {	n}
(depending on 
) with 	n → 0 as n → 0, and constants M;C3; C4¿ 0 such that

P
(

sup
g−1
n 6t6gn

∣∣∣∣ (1=n)Ln(nt)− 2
√
t√

t

∣∣∣∣¿y

)
6C3 exp(−C4n(y − 	n)2)

for all n; y with 	n6y6M .

In Section 3, we prove this result and use it to analyse a “Brownian growth model”
which corresponds to the “corner growth model” associated with discrete last-passage
percolation. For the case where the weights in the discrete peroclation problem are
exponential (or geometric), the analysis of the limiting shape for this corner growth
model dates back at least to Rost (1981); more recently Johansson (2000) derived
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the exact limiting behaviour of the Muctuations of the shape, using a connection with
GUE random matrices, following the analysis in Baik et al. (1999) of the closely
related model of the longest increasing subsequence of a random permutation. In
Martin (2002), shape theorems are given for models with more general weight dis-
tribution, and a universality property for the asymptotics of the limiting shape close to
the boundary of the quadrant is proved, using a Brownian scaling related to the one
studied here.
To deJne our growth model, we consider sets deJned, for s¿ 0, by

As = {(n; t)∈N× R+: Ln(t)6 s}:
We can regard s as a time parameter, and describe As as the “shape at time s”; this
introduces a growth model which corresponds to the Brownian percolation model. One
can approximate the random set As by the deterministic set Hs, where

Hs = {(n; t): 2√nt6 s}:
We establish shape theorems with uniform convergence. Firstly we show that, for any
s, the approximation Hs to As becomes arbitrarily accurate as n becomes large, except
on a set where t is very small or very large compared to n; this formulation reMects the
Brownian scaling inherent in the model. Secondly, we characterise the convergence of a
scaled version of As to H1 as s becomes large; this formulation resembles more closely
a shape theorem for a traditional discrete Jrst-passage (or last-passage) percolation
growth model (e.g. Kesten, 1986).
We remark that the process Ln has the same law as the largest eigenvalue of

n-dimensional Hermitian Brownian motion; this was established in O’Connell and Yor
(2002). (See also Bougerol and Jeulin, 2001.)
In this setting, out concentration inequalities complement recent large deviations

results obtained in Ben Arous and Guionnet (1997), Ben Arous et al. (2001) and
Cabanal Duvillard and Guionnet (2001). Let {Hn(t); t ∈R} be a standard Hermitian
Brownian motion, and denote the eigenvalues of Hn(t) by �n

1(t)¿ · · ·¿�n
n(t). Then

the processes Ln and �n
1 have the same law, and Theorem 2 is true as stated with Ln

replaced by �n
1. In the random matrix context, our proof is not very direct; an alternative

route would be to prove Theorem 2 using concentration results for Hermitian Brownian
motion. However, we have not chosen to pursue this route as we wished to derive the
result directly as outlined in O’Connell and Yor (2001).
We mention here brieMy some of the concentration and large deviations results which

have been obtained in the random matrix context. In Cabanal Duvillard and Guionnet
(2001), large deviations upper and lower bounds are obtained for the process empirical
measure

�n =
1
n

n∑
i=1

��n
i

at the speed n2. These upper and lower bounds are sharp when restricted to the marginal
at time 1, that is, they agree with the full LDP obtained in Ben Arous and Guionnet
(1997), for �n(1). This yields the correct speed for deviations of �n

1 to the left of its
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mean. For example, one can compute the limit

lim
n→∞

1
n2
logP(�n

1(1)¡xn) =−I(x)

and I(x)¿ 0 for x¡ 2. For deviations to the right, however, the correct speed is n; a
slight modiJcation of the proof of Theorem 6.2 in Ben Arous et al. (2001) yields: for
x¿ 2

lim
n→∞

1
n
logP(�n

1(1)¿xn) =−J (x);

where J (x)¿ 0. The function J can be computed explicitly. In a recent paper, Ledoux
(2002) has obtained very precise concentration results for largest eigenvalue problems.

2. Proof of Theorem 2

In this section we present a proof of Theorem 1 following the outline given in
O’Connell and Yor (2001). The idea is to use a representation for the process Ln

as a sequence of Brownian queues in tandem, together with the sharp concentration
inequality stated in Theorem 2 above.

Lemma 4. The function Ln(nt) is superadditive and
1
n
Ln(nt)→ c

√
t a:s: as n → ∞

for some constant c¡∞.

Proof. Consider an extension of the function of interest

Ln;m(u; t) = sup
u6s16···6sm−n−16t

B(n+1)(u; s1) + · · ·+ B(m)(sm−n−1 ;t):

Thus Ln(nt) := L0; n(0; nt). By observation we have the fundamental inequality

L0; n+m(0; t)¿L0; n(0; s) + Ln;n+m(s; t) ∀s; t ∈R; n; m∈N: (1)

Inequality (1) shows that Ln(nt) is superadditive for Jxed t. The stationarity inherent
in our set up ensures that the conditions of Kingman’s subadditive ergodic theorem are
met; hence, there is a function l(t) such that for any t

1
n
E Ln(nt) ↑ l(t) as n → ∞

and
1
n
Ln(nt)→ l(t) a:s: as n → ∞:

There is a natural scaling in Ln(t), inherited from the Brownian motion, that

Ln(�t) =
√
�Ln(t) in distribution:

Thus E Ln(nt)=n = cn
√
t, for a sequence of constants with cn ↑ c as n → ∞, with the

limit l(t) = c
√
t.
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Now in O’Connell and Yor (2001) it is shown from a tandem queue representation
that for given m¿ 0 one can write

sup
t¿0

{Bnt − mnt + L0; n(−nt; 0)}=
n∑

k=1

qk(0); (2)

where B is a Brownian motion and qk(0) are i.i.d. exponential mean 1=m. Since
L0; n(−nt; 0) = Ln(nt) in distribution, we can take expectations and divide by n to give

1
n
E Ln(nt)6

1
m
+ mt

for any m and t. But the LHS is cn
√
t; taking m= 1=

√
t we get cn6 2 for all n, and

so c6 2 also.

To show that in fact c = 2, we aim to show that the LHS of (2) converges to a
Legendre transform of l(t). To do this we establish our concentration inequality. First
we need a couple of estimates.

Lemma 5. For h¿ 0 and any n; t,

P(|Ln(t)− E Ln(t)|¿h)6 2 exp
(
−h2

2t

)
:

Proof. Apply Borell’s inequality (e.g. Adler, Theorem 2.1) to the centred Gaussian
process Xt =

∑n
i=1 B(i)ti−1 ;ti over the parameter set {t: t = (t1; : : : ; tn−1); 0 = t06 t16

· · ·6 tn−16 tn= t}, using the fact that the variance of Xt is t for all t in the parameter
set.

Lemma 6. Let t0¡t1 and h¿ 0. Then for any n,

P(For some t ∈ (t0; t1); Ln(t) 
∈ (Ln(t0)− h; Ln(t1) + h))

6 4
√
t1 − t0
h

exp
(
− h2

2(t1 − t0)

)
:

Proof. If t ∈ (t0; t1) then
Ln(t0) + B(n)(t0; t)6Ln(t)6Ln(t1)− B(n)(t; t1):

So,

P (For some t ∈ (t0; t1); Ln(t) 
∈ (Ln(t0)− h; Ln(t1) + h))

6P(For some t ∈ (t0; t1); B(n)(t0; t)¡− h or B(n)(t; t1)¡− h)

6 2P(Mt1−t0¿ h)

(where Mt is the maximum of a Brownian motion over (0; t))

= 4P(Bt1−t0¿ h)
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by the reMection principle. The result follows from a standard estimate on the tail of
the normal distribution.

Now we prove the concentration inequality in Theorem 2, Jrst for the unknown
value of c.

Lemma 7. There exist constants C1; C2¿ 0 and a sequence {	n} with 	n → 0 as
n → ∞ such that

P
(
sup
t¿0

∣∣∣∣ (1=n)Ln(nt)− c
√
t

1 + t

∣∣∣∣¿y
)
6C1 exp(−C2n(y − 	n)2)

for all n, y with y¿	n.

Proof. Let cn = E Ln(nt)=n
√
t as in the proof of Lemma 4, and deJne

(n(t) =
(1=n)Ln(nt)− cn

√
t

1 + t
:

Let 	n = (c− cn) + n−1=4; note that 	n ↓ 0 as n → ∞ since cn ↑ c. Assume y¿ 	n and
let x = y − (c − cn). Then

P
(
sup
t¿0

∣∣∣∣ (1=n)Ln(nt)− c
√
t

1 + t

∣∣∣∣¿y
)
6P

(
sup
t¿0

|(n(t)|¿x
)

: (3)

Let �=min{1; (x=6c)2}. From the deJnitions of y; x; 	n and � we have that x¿n−1=4,
and that n�x2¿ (1 + 6c)−2. To estimate the RHS of (3), we begin by dividing the
t-axis into intervals of length �. We have

P
(
sup
t¿0

|(n(t)|¿x
)
6P

(
sup
j∈N

|(n(j�)|¿ x
3

)

+P
(
sup
t¿0

|(n(t)|¿x; sup
j∈N

|(n(j�)|6 x
3

)
:

We estimate these two terms separately.
For the Jrst term, Lemma 5 gives

P
(
sup
j∈N

|(n(j�)|¿ x
3

)
6
∑
j∈N

P
(
|(n(j�)|¿ x

3

)

=
∑
j∈N

P
(
|Ln(nj�)− E Ln(nj�)|¿n(1 + j�)

x
3

)

6
∑
j∈N

2 exp
(
−n(1 + j�)2x2

18j�

)

6 2
∑
j∈N

exp
(
− n
18
(1 + j�)x2

)
: (4)
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For the second term, note that

P
(
sup
t¿0

|(n(t)|¿x; sup
j∈N

|(n(j�)|6 x
3

)

6
∑
j∈N

P
(
∃t ∈ (j�; (j + 1)�):

(n(t) 
∈
[
−2|(n(j�)| − x

3
; 2|(n((j + 1)�)|+ x

3

])
: (5)

But a direct calculation from the deJnitions of (n and of � gives the following
property: if

j�¡ t¡ (j + 1)�

and

Ln(nt)∈
[
Ln(nj�)− n(1 + j�)

x
6
; Ln(n(j + 1)�) + n(1 + j�)

x
6

]
then

(n(t)∈
[
−2|(n(j�)| − x

3
; 2|(n((j + 1)�)|+ x

3

]
:

Thus, using (5) and then Lemma 6,

P
(
sup
t¿0

|(n(t)|¿x; sup
j∈N

|(n(j�) |6 x
3

)

6
∑
j∈N

P
(
∃t ∈ (j�; (j + 1)�):

Ln(nt) 
∈
[
Ln(nj�)− n(1 + j�)

x
6
; Ln(n(j + 1)�) + n(1 + j�)

x
6

])
(6)

6
∑
j∈N

4
√
�√

n(1 + j�)x=6
exp
(
−n(1 + j�)2x2

72�

)

6 4(1 + c)
∑
j∈N

exp
(
− n
72
(1 + j�)x2

)
: (7)

Adding the RHS of (4) and (7), we get (for constants C; C1; C2)

P
(
sup
t¿0

|(n(t)|¿x
)
6C

∑
j∈N

exp(−C2n(1 + j�)x2)

=
C exp(−C2nx2)
1− exp(−C2n�x2)

6C1 exp(−C2nx2) (since n�x2¿ (1 + 6c)−2)

6C1 exp(−C2n(y − 	n)2)

since 06y − 	n6 x. By (3), we are Jnished.
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We have now deduced the technical conditions required to prove directly the result
of O’Connell and Yor (2001), Section 4.
To complete the proof we introduce a little more notation. Let C denote the contin-

uous functions on [0;∞) and let C0 =C ∩ {*: *(0) = 0; limt→∞ *(t)=t = 0} equipped
with the norm ‖*‖= supt¿0 |*(t)|=(1 + t).

Theorem 8. For any t ¿ 0

Ln(nt)=n → 2
√
t a:s: as n → ∞:

Proof. As at (2) we have that

sup
t¿0

{
1
n
B(0; nt) − mt +

1
n
Ln(nt)

}
→ 1

m
(8)

in probability, as n → ∞. We now justify taking the limit on the LHS to obtain a
Legendre transform of l(t), where l(t) = c

√
t is the limit established in Lemma 4.

As the map * → supt¿0{*(t)− +t} is continuous on C0 in the induced topology, by
Ganesh and O’Connell (2002), if we can prove∥∥∥∥1n B(0; n·) +

1
n
Ln(n·)− l

∥∥∥∥→ 0; a:s: (9)

as n → ∞, then

sup
t¿0

{
1
n
B(−t;0) − mt +

1
n
Ln(t)

}
→ sup

t¿0
{−mt + l(t)} (10)

a.s. as n → ∞. The proof is then completed by comparing (8) and (10) and inverting
the Legendre transform.
We write B̃n(t) = B(0; nt)=n and L̃n(t) = Ln(nt)=n and bound the left side of (9) by

two terms as∥∥∥∥1n B(0; n·) +
1
n
Ln(n·)− l

∥∥∥∥6 ‖B̃n‖+ ‖L̃n − l‖:

Firstly ‖B̃n‖ → 0 almost surely. We write Mt=sup06s6t B(0; s) and apply standard facts
about Brownian motion, to get

P
(
sup
t¿0

|B(0; nt)|
n(1 + t)

¿ x
)
6 P

(
sup

0¡t¡1

|B(0; nt)|
n(1 + t)

¿ x
)
+ P

(
sup

16t¡∞

|B(0; nt)|
n(1 + t)

¿ x
)

6 P
(
1
n
Mn ¿x

)
+ P

(
sup

16t¡∞

nt|B(0;1=nt)|
n(1 + t)

¿ x
)

6 P(Mn ¿nx) + P(M1=n ¿ 2x)

6 a exp(−x2n);

for some constant a. This exponential tail estimate gives the almost sure convergence
to 0.
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For the second term we apply the concentration inequality in Lemma 7. The expo-
nential rate of convergence ensures that we have the almost sure convergence in the
norm.
Thus, both terms converge almost surely and we have established the required con-

tinuity on C0 to deduce the convergence of the Legendre transforms. The Jnal part is
to invert the Legendre transform, which we leave for the reader. .

3. Brownian growth model

3.1. Results

For s¿ 0, deJne the set

As = {(n; t): Ln(t)6 s}
considered as a subset of N×R+. We can regard s as a time parameter, and describe
As as the “shape at item s”; this introduces a growth model which corresponds to the
Brownian peroclation model.
By deJnition of As and of Ln(t), we have that

(i) As ⊂ As′ whenever s¡ s′ and
(ii) for any s; (n′; t)∈As whenever (n; t)∈As and n′ ¡n.

However, it is not the case that (n; t′)∈As whenever (n; t)∈As and t′ ¡t.
We can approximate the random set As by the deterministic set Hs, where

Hs = {(n; t): 2√nt6 s}:
The Jrst result below, which we prove using Theorem 3, shows that as n becomes
large, this approximation becomes arbitrarily accurate (uniformly in s), except on a set
of points where t is extremely small or extremely large compared to n:

Theorem 9. Let 
¡ 1, and let gn = exp(exp(n
)). Then w.p. 1

lim
n→∞ sup

s; t:g−1
n 6t6gn
2
√

nt6s

{
Ln(t)
s

− 1
}
= 0 (11)

and

lim
n→∞ inf

s; t:g−1
n 6t6gn

s62
√

nt

{
Ln(t)
s

− 1
}
= 0: (12)

Thus for any 	¿ 0, w.p. 1 there exists N large enough such that

(H(1−	)s ∩ GN ) ⊂ (As ∩ GN ) ⊂ H(1+	)s;

where GN is the set {(n; t): n¿N; g−1n 6 t6 gn}.
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If we do not require uniformity in s, we can remove the lower bound in (11):

Theorem 10. Let s¿ 0. Then w.p. 1

sup
n; t:2

√
nt6s

Ln(t)¡∞ (13)

and

lim
n→∞ sup

t:2
√

nt6s
Ln(t) = s: (14)

However, we cannot similarly remove the upper bound in (12). The process Ln(t)
can behave badly very close to the t-axis; for example it is the case that

lim inf
t→∞ Ln(t) =−∞ a:s for all n:

Finally, we give a result which more closely resembles a shape theorem for a more
traditional Jrst-passage percolation growth model (e.g. Kesten, 1986, Theorem 1.7):

Theorem 11. Let 
¡ 1 and de?ne G={(n; t): t6 exp(exp(n
))}. Then for any 	¿ 0,
w:p: 1,

(H(1−	)s ∩ G) ⊂ (As ∩ G) ⊂ (H(1+	)s ∩ G)

for all su@ciently large s.

Such a formulation, indicating that the diPerence between As and Hs becomes arbi-
trarily small as s becomes large, (so equivalently as the product nt becomes large), is
less natural in the Brownian context, however. Here the distribution of As is the same
for all s, up to a linear rescaling; by Brownian scaling, the form of the Muctuations of
Ln(t) depend essentially only on n and not on t.
In the remainder of this section we prove Theorem 3 and the shape results above.

3.2. Proof of Theorem 3

Proof. As before, write cn = E Ln(nt)=n
√
t, so that cn ↑ 2.

Let x = 1
4 [y − (2− cn)]; then we can bound the quantity we are interested in by

P
(

sup
g−1
n 6t6gn

∣∣∣∣ (1=n)Ln(nt)− 2
√
t√

t

∣∣∣∣¿y

)

6P
(

sup
g−1
n 6t6gn

∣∣∣∣Ln(nt)− E Ln(nt)√
t

∣∣∣∣¿ 4xn

)
: (15)

Assume for the moment that

n−(1−
)=46 x6 1 (16)
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(we will strengthen this assumption later). For r ∈Z, denote by Ir the interval

[(1 + x)2(r−1); (1 + x)2r]:

DeJne R(n) = exp(n(1+
)=2). Then using (16) one can show that (1 + x)2R(n)¿ gn for
all n¿ 1; thus, the collection of intervals {Ir ;−R(n)6 r6R(n)} covers [g−1n ; gn] for
all n.
Fix n and r. To bound the RHS of (15), we will estimate the probability that∣∣Ln(nt)− cnn

√
t
∣∣¿ 4xn

√
t

for some t ∈ Ir (and then sum over r). Let t0 = (1+ x)2(r−1) and t1 = (1+ x)2t0, so that
Ir = [t0; t1]. Then for all t; t′ ∈ Ir , we have that∣∣∣√t′ −√

t
∣∣∣6 x

√
t0

and so, since E Ln(nt) = cnn
√
t6 2n

√
t,

|E Ln(nt)− E Ln(nt′)|6 2xn
√
t0: (17)

Using Lemma 5, we have that

P(|Ln(nt0)− E Ln(nt0)|¿ xn
√
t0)6 2 exp

(
−x2n
2

)
(18)

and that

P(|Ln(nt1)− E Ln(nt1)|¿ xn
√
t0)6 2 exp

(
−x2nt0
2t1

)

= 2 exp
(
− x2n
2(1 + x)2

)
: (19)

From Lemma 6, we also have that

P(∃t ∈ Ir with Ln(nt) 
∈ [Ln(nt0)− xn
√
t0; Ln(nt1) + xn

√
t1])

6
4
√
x2 + 2x
x
√
n

exp
(
− x2n
2(x2 + 2x)

)
: (20)

Now if none of the events on the LHS of (18), (19) or (20) occurs, then, using (17)

|Ln(nt)− E Ln(nt)|6 4xn
√
t06 4xn

√
t

for all t ∈ Ir . So, summing the RHS of (18), (19) and (20) and using the assumption
that x6 1, we have

P(∃t ∈ Ir with |Ln(nt)− E Ln(nt)|¿ 4xn
√
t)6C′ exp(−Cnx2)

for some constants C; C′ ¿ 0 (independent of x; n; r and 
).
Summing this over all r with −R(n)¡r6R(n), we obtain

P
(

sup
g−1
n 6t6gn

∣∣∣∣Ln(nt)− E Ln(nt)√
t

∣∣∣∣¿ 4xn

)
6 2R(n)C′ exp(−Cnx2)

= C′′ exp(−Cnx2 + n(1+
)=2): (21)
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We are essentially done now, except that we need to remove the positive term inside
the exponential on the RHS of (21).
To do this, we strengthen the assumption in (16), and now suppose that

(1 + C−1=2)n−(1−
)=46 x6 1:

From the deJnition of x, this is implied by

	n6y6 4; (22)

where

	n = (2− cn) + 4(1 + C−1=2)n−(1−
)=4: (23)

(Since cn ↑ 2, we have 	n → 0 as desired.) From (22), (23) and the deJnition of x,
one can proceed to show that

−Cnx2 + n(1+
)=26− C
16
(y − 	n)2:

Plugging this into the RHS to (21) and using (15), we have proved the theorem with
{	n} deJned by (23) and with M = 4.

3.3. Proof of results from Section 3.1

Proof of Theorem 9. Using Borel–Cantelli and Theorem 3 for some value 
′ with

¡
′ ¡ 1, we have

lim
n→∞ sup

t̃:h−1
n 6t̃6hn

∣∣∣∣∣ (1=n)Ln(nt̃)− 2
√
t̃√

t̃

∣∣∣∣∣= 0 a:s:;

where hn = exp(exp n
′). Writing t = nt̃ and using the fact that ngn ¡hn when n is
large enough, we can rewrite this to get

lim
n→∞ sup

t:g−1
n 6t6gn

∣∣∣∣ Ln(t)
2
√
nt

− 1
∣∣∣∣= 0 a:s: (24)

Now (11) and (12) follow immediately.
To deduce the last part of the theorem, note that if (n; t)∈H(1−	)s but (n; t) 
∈

As, then 2
√
nt6 (1 − 	)s and Ln(t)¿s, giving Ln(t)=2

√
nt ¿ 1=(1 − 	). Similarly, if

(n; t)∈As\H(1+	)s, then Ln(t)=2
√
nt ¡ 1=(1+	). In either case there are a.s. only Jnitely

many n such that this occurs for some t ∈ [g−1n ; gn]. .

Proof of Theorem 10. Let s¿ 0 and h¿ 0. For any n,

P
(
Ln

(
s2

4n

)
¿s(1 + h)

)
6P

(
Ln

(
s2

4n

)
− E Ln

(
s2

4n

)
¿hs

)

6 exp(−2h2n);
using Lemma 5 and the fact that E Ln(S2=4n)6 l(s2=4) = s.
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Also

P
(

sup
t:2

√
nt6s

Ln(t)¿Ln

(
s2

4n

)
+ hs

)
= P


 sup
06t6 s2

4n

Ln(t)¿Ln

(
s2

4n

)
+ hs




6
1

2h
√
n
exp(−2h2n);

by Lemma 6. Hence for any n,

P
(

sup
t:2

√
nt6s

Ln(t)¿s(1 + 2h)

)
6
(
1 +

1
2h
√
n

)
exp(−2h2n):

Now (13) follows since the RHS tends to 0 as h → ∞, while (14) follows from
Borel–Cantelli since the sum of the RHS over n is Jnite for any h¿ 0.

Proof of Theorem 11. If (n; t)∈H(1−	)s but (n; t) 
∈ As, then Ln(t)¿s and
Ln(t)=2

√
nt ¿ 1=(1− 	).

On the other hand, if (n; t)∈As but (n; t) 
∈ H(1+	)s, then 2
√
nt ¿ s and

Ln(t)=2
√
nt ¡ 1=(1 + 	).

So to prove the theorem it will suRce to show that for any �¿ 0, w.p. 1, the set{
(n; t):

∣∣∣∣ Ln(t)
2
√
nt

− 1
∣∣∣∣¿�; max{Ln(t); 2

√
nt}¿s; t6 exp(exp n
)

}
is empty for large enough s.
Suppose this fails. Then there is a sequence (nk ; tk) such that, for each k,∣∣∣∣ Lnk (tk)

2
√
nktk

− 1
∣∣∣∣¿�

and

tk 6 exp(exp n

k) (25)

and either Lnk (tk)→ ∞ or 2
√
nktk → ∞.

But by (13), if Lnk (tk) → ∞ then necessarily (w.p. 1) 2
√
nktk → ∞ anyway. Thus

tk ¿n−1k for large enough k, and by (25) if also follows that nk → ∞. So Jnally it
suRces to show that the set{

n: ∃t with n−16 t6 exp(exp n
) and
∣∣∣∣ Ln(t)
2
√
nt

− 1
∣∣∣∣¿�

}
is a.s. Jnite. This follows immediately from (24).
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