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Abstract
Let A(t) be a n×p matrix with independent standard complex Brownian entries and set M(t) =
A(t)∗A(t). This is a process version of the Laguerre ensemble and as such we shall refer
to it as the Laguerre process. The purpose of this note is to remark that, assuming n ≥
p, the eigenvalues of M(t) evolve like p independent squared Bessel processes of dimension
2(n− p + 1), conditioned (in the sense of Doob) never to collide. More precisely, the function
h(x) =

∏
i<j(xi − xj) is harmonic with respect to p independent squared Bessel processes of

dimension 2(n−p+1), and the eigenvalue process has the same law as the corresponding Doob
h-transform.
In the case where the entries of A(t) are real Brownian motions, (M(t))t≥0 is the Wishart pro-
cess considered by Bru [Br91]. There it is shown that the eigenvalues of M(t) evolve according
to a certain diffusion process, the generator of which is given explicitly. An interpretation in
terms of non-colliding processes does not seem to be possible in this case.
We also identify a class of processes (including Brownian motion, squared Bessel processes and
generalised Ornstein-Uhlenbeck processes) which are all amenable to the same h-transform, and
compute the corresponding transition densities and upper tail asymptotics for the first collision
time.

1 Introduction

Let A(t) be a n×p matrix with independent standard complex Brownian entries (so that each
entry of A(t) has variance 2t) and set M(t) = A(t)∗A(t). We shall refer to M = (M(t))t∈[0,∞)
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as the Laguerre process. In the case p = 1, M is a squared Bessel process of dimension 2n,
usually denoted by BESQ2n.
Let λ(t) = (λ1(t), . . . , λp(t)) be the vector of eigenvalues of M(t), ordered decreasingly such
that λp(t) ≥ · · · ≥ λ1(t) ≥ 0. (Note that M(t) is almost surely nonnegative definite for any
t ≥ 0.) The process (λ(t))t≥0 is a diffusion on [0,∞)p with generator given by

Hn,p = 2
p∑

i=1

xi∂
2
i + 2

p∑
i=1

[
n +

p∑
j=1
j 6=i

xi + xj

xi − xj

]
∂i. (1.1)

This follows from the arguments given by Bru [Br91] for the Wishart case, with minor modi-
fications. We remark that the Focker-Planck equation associated with (λ(t))t≥0 was formally
derived in [AW97].
We will assume that n ≥ p > 1. Our main observation is that the process (λ(t))t≥0 can be
identified as the h-transform of p independent squared Bessel processes of dimension 2(n−p+1),
where the function h : [0,∞)p → R is given by

h(x) =
p∏

i,j=1
i<j

(xj − xi), x = (x1, . . . , xp) ∈ [0,∞)p. (1.2)

In other words, the process λ behaves like p independent BESQ2(n−p+1) processes conditioned
never to collide.
To justify this claim, we will show that the function h given by (1.2) is harmonic with respect
to the generator

Gp,d = 2
p∑

i=1

xi∂
2
i + d

p∑
i=1

∂i (1.3)

of a vector of p independent BESQd, and use standard methods to compute the generator Ĝp,d

of the h-transform. We obtain

Ĝp,d = 2
p∑

i=1

xi∂
2
i + d

p∑
i=1

∂i + 2
p∑

i=1

[ p∑
j=1
j 6=i

(xi + xj

xi − xj
+ 1

)]
∂i. (1.4)

It is now easy to see that Hn,p = Ĝp,2(n−p+1). This will be presented carefully in the next
section.
As is well-known, the function h is also harmonic with respect to the generator of p-dimensional
Brownian motion. This also arises in the context of random matrices. It is a classical result,
due to Dyson [Dy62], that the eigenvalues of Hermitian Brownian motion (the process-version
of the Gaussian unitary ensemble) evolve like independent Brownian motions conditioned never
to collide (see also [Gr00]). In Lemma 3.1 below we identify a class of generators for which
the function h is harmonic which includes both of the above. We remark that Dyson also
considered unitary Brownian motion, and showed that the eigenvalues in this case behave
like independent Brownian motions on the circle conditioned never to collide via the complex
analogue of the function h. (For more detailed information about this process see [HW96].)
In the Wishart case, where the entries of A = (A(t))t≥0 are independent standard real Brow-
nian motions, we do not see how to give a similar interpretation for the eigenvalue process. In



Laguerre eigenvalues and non-colliding Bessel processes 109

this case, Bru [Br91] identified the generator of the process of eigenvalues of M(t) as

2
p∑

i=1

xi∂
2
i +

p∑
i=1

[
n +

p∑
j=1
j 6=i

xi + xj

xi − xj

]
∂i. (1.5)

Note the missing factor of 2 in front of the drift term.
Similar remarks apply to the Gaussian ensembles: in Dyson’s work [Dy62] it turned out that,
in contrast to the complex case, the process version of the Gaussian orthogonal ensemble (the
real case) does not admit a representation of the eigenvalue process in terms of a system of
independent particles conditioned never to collide.
Going back to the Wishart case, where the entries of A = (A(t))t≥0 are independent standard
real Brownian motions, as is argued by Bru, the process M is a diffusion in the space of real
non-negative definite matrices. However, as discussed in [Br91, Remark 2], in the case k = p,
this is not the same as the diffusion considered in [NRW86] (see also [PR88] and [Ke90]).
Indeed, the process considered in [NRW86] is Dynkin’s Brownian motion GTG, where G is the
right-invariant Brownian motion on the multiplicative group of invertible real k × k-matrices.
The interpretation of the Laguerre eigenvalue processes as h-transforms can be applied to
obtain alternative derivations for the eigenvalue densities of the corresponding ensemble. As
is known from the theory of random matrices (see, e.g., [Ja64]), these densities are given in
the following closed form. We have

P(λ(1) ∈ dx) =
1

Zp,ν

p∏
i,j=1
i<j

(xi − xj)2
p∏

j=1

[
xν

j e−xj
]

dx, x1 > · · · > xp ≥ 0, (1.6)

where ν = n − p denotes the index of BESQ2(n−p+1), and Zp,ν denotes the normalisation
constant. In words, λ(1) has the distribution of p independent Gamma(ν)-distributed random
variables, transformed with the density h(x)2.
In Section 2 we introduce the h-transform of (BESQd)⊗p and its generator, and in Section 3 we
establish the harmonicity of h for a certain class of processes having independent components,
which includes Brownian motion, squared Bessel processes and generalized Ornstein-Uhlenbeck
processes driven by Brownian motion. Furthermore we calculate the transition densities of the
transformed process started at the origin and describe the upper tail asymptotics of the first
collision time of the components.

2 Non-colliding squared Bessel processes

Fix p ∈ N and let
X = (X(t))t∈[0,∞) = (X1(t), . . . , Xp(t))t∈[0,∞)

be a diffusion on [0,∞)p whose components are independent squared Bessel processes (BESQd)
of dimension d. In the following, the dimension d is any nonnegative number. The process
X has the generator Gp,d given by (1.3). We denote the distribution of X when started at
x ∈ [0,∞)p by Px. Note that 0 is an entrance boundary for the BESQd. In dimensions d ≥ 2,
the process X stays in (0,∞)p after time zero for ever, and the domain of the generator consists
of the functions f such that Gp,df is continuous and bounded on [0,∞) and f+(0+) = 0. If
the dimension d is smaller than two, then the components of X hit zero with probability one,
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the boundary point 0 is non-singular. If 0 is reflecting, then Gp,d has the same domain as
above.
As follows from the more general Lemma 3.1 below, the function h in (1.2) is harmonic with
respect to Gp,d, hence the h-transform of (BESQd)⊗p is well-defined. Let us compute its
generator.

Lemma 2.1 The generator of the h-transform of X is given by

Ĝp,df(x) = Gp,df(x) + 2
p∑

i=1

[ p∑
j=1
j 6=i

(xi + xj

xi − xj
+ 1

)]
∂if(x). (2.7)

Proof. We have Ĝp,d = Gp,d + Γ(log h, · ), where Γ(g, f) = Gp,d(f · g) − fGp,d(g) − gGp,d(f)
is the so-called opérateur carré du champs (see, for example, [RY91]). Hence,

Ĝp,df − Gp,df = Gp,d(f · log h) − fGp,d(log h) − log h Gp,d(f)

= 2
p∑

i=1

xi

[
∂2

i (f log h) − f∂2
i log h − log h ∂2

i f
]

+ d

p∑
i=1

[
∂i(f log h) − f∂i log h − log h ∂if

]
= 2

p∑
i=1

xi2(∂i log h)(∂if) = 4
p∑

i=1

xi
∂ih

h
∂if

= 4
p∑

i=1

xi

∑
j 6=i

1
xi − xj

∂if = 2
p∑

i=1

[ p∑
j=1
j 6=i

(xi + xj

xi − xj
+ 1

)]
∂if(x).

(2.8)

�

3 Generalisations and applications

In this section, we introduce further non-colliding processes by means of h-transforms of pro-
cesses with independent components. Fix p ∈ N and let

X = (X(t))t∈[0,∞) = (X1(t), . . . , Xp(t))t∈[0,∞)

be a diffusion on a (possibly infinite) interval I which contains 0. By

Gf(x) =
p∑

i=1

1
2
σ2(xi) ∂2

i f(x) +
p∑

i=1

µ(xi) ∂if(x), x = (x1, . . . , xp) ∈ Ip. (3.9)

we denote the generator of X, where σ2 : I → (0,∞) and µ : I → R. In the following we
identify a class of processes for which the function h in (1.2) is harmonic.

Lemma 3.1 Assume that any of the following cases is satisfied: Either 1
2σ2(x) = ax + b

and µ(x) = c with some a, b, c ∈ R, or (in the case p > 2) 1
2σ2(x) = x2 + ax + b and

µ(x) = 2(p − 2)x/3 + c for some a, b, c ∈ R, or (in the case p = 2) 1
2σ2(x) is arbitrary and

µ(x) constant. Then h is harmonic with respect to G, i.e., Gh ≡ 0.
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Proof. Abbreviate G = Gσ + Gµ with obvious notation. Using the Leibniz rule
(∏

i gi

)′ =∑
i g′i

∏
j 6=i gj , one easily derives that

Gµh(x) = h(x)
∑
i<j

µ(xi) − µ(xj)
xi − xj

,

Gσh(x) = −h(x)
∑

i<j<k

1
(xk − xj)(xj − xi)

[
σ2(xj) − σ2(xk)

xj − xi

xk − xi
− σ2(xi)

xk − xj

xk − xi

]
.

Hence, both Gµh and Gσh are identically zero if µ is constant and 1
2σ2 a polynomial of first

order. However, if p > 2 and µ(x) = cx and 1
2σ2(x) = x2, then Gµh = cp

2 (p − 1)h, and
Gσh = − 1

3p(p − 1)(p − 2)h. Hence, Gh ≡ 0 for the choice c = 2(p − 2)/3. Lastly, in the case
p = 2, we have that Gσh ≡ 0 since h is a polynomial of first order in this case. �

Note that Lemma 3.1 covers in particular the cases of Brownian motion, squared Bessel pro-
cesses and generalised Ornstein-Uhlenbeck processes driven by Brownian motion (see [CPY01]).
As an application, we compute the transition densities of the h-transform of X, started at the
origin, and the upper tails of the first collision time

T = inf{t > 0: X(t) /∈ W}, (3.10)

where
W = {x = (x1, . . . , xp) ∈ Ip : xp > · · · > x1}. (3.11)

Let pt(x1, y1) denote the transition density of the process (X1(t))t≥0, say. Recall that Px

denotes the law of X, started at x ∈ Ik; by P̂x we denote the law of the h-transform of X,
started at x ∈ W . We will first state a general result and later discuss the special cases of
Brownian motion and BESQd.

Lemma 3.2 Assume that h is harmonic for the generator of X, and assume that there is a
Taylor expansion

pt(x1, y1)
pt(0, y1)

= ft(x1)
∞∑

m=0

(x1y1)mam(t), t ≥ 0, y1 ∈ I, (3.12)

for x1 in a neighborhood of zero, where am(t) > 0 and ft(x1) > 0 satisfy limt→∞ am+1(t)/am(t) =
0 and ft(0) = 1 = limt→∞ ft(x1). Then, for any t > 0 and y ∈ W ,

lim
x→0
x∈W

P̂x(X(t) ∈ dy) = Cth(y)2 P0(X(t) ∈ dy), (3.13)

where Ct =
∏p−1

m=0 am(t). Furthermore, for any x ∈ W ,

Px

(
T > t

) ∼ Cth(x) E0

[
h(X(t))1l{X(t) ∈ W}], t → ∞. (3.14)

Proof. We are going to use the formula [KM59]

Px(T > t; X(t) ∈ dy) =
∑

σ∈Sp

sign(σ)
p∏

i=1

pt(xi, yσ(i)) dy, x, y ∈ W, (3.15)
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where Sp denotes the set of permutations of 1, . . . , p, and sign denotes the signum of a per-
mutation. Use (3.12) in (3.15) to obtain that

Px

(
T > t; X(t) ∈ dy

)
P0

(
X(t) ∈ dy

) =
p∏

i=1

ft(xi)
∑

m1,...,mp∈N0

p∏
i=1

[
xmi

i ami(t)
] ∑

σ∈Sp

sign(σ)
p∏

i=1

ymi

σ(i). (3.16)

Observe that ∑
σ∈Sp

sign(σ)
p∏

i=1

ymi

σ(i) = det
[(

y
mj

i

)
i,j=1,...,p

]
(3.17)

is equal to zero if m1, . . . , mp are not pairwise distinct. Hence, in (3.16), we may restrict the
sum on m1, . . . , mp ∈ N0 to the sum on 0 ≤ m1 < m2 < · · · < mp and an additional sum on
τ ∈ Sp and write mτ(1), . . . , mτ(p) instead of m1, . . . , mp. This yields that

Px

(
T > t; X(t) ∈ dy

)
P0

(
X(t) ∈ dy

)
=

p∏
i=1

ft(xi)
∑

0≤m1<···<mp

p∏
i=1

ami(t) det
[(

y
mj

i

)
i,j=1,...,p

]
det

[(
x

mj

i

)
i,j=1,...,p

]
.

(3.18)

Now use that the two determinants may be written using the so-called Schur function [Ma79]
as

det
[(

x
mj

i

)
i,j=1,...,p

]
= h(x) Schurm(x), (3.19)

where we abbreviated m = (m1, . . . , mp). The Schur function Schurm(x) is a certain multi-
polynomial in x1, . . . , xp whose coefficients are nonnegative integers and may be defined com-
binatorially. It is homogeneous of degree m1 + · · · + mp − p

2 (p − 1) and has the properties

Schurm(1, . . . , 1) =
h(m)∏

1≤i<j≤p(j − i)
,

Schur(0,1,...,p−1)(x) = 1,

Schurm(0, . . . , 0) =

{
1 if m = (0, 1, . . . , p − 1),
0 otherwise.

(3.20)

Using (3.19) in (3.16), we arrive at

Px

(
T > t; X(t) ∈ dy

)
P0

(
X(t) ∈ dy

)
= h(x)h(y)

p∏
i=1

ft(xi)
∑

0≤m1<···<mp

Schurm(x) Schurm(y)
p∏

i=1

ami(t).
(3.21)

In order to derive (3.13), note that

P̂x(X(t) ∈ dy) = Px(T > t; X(t) ∈ dy)
h(y)
h(x)

, (3.22)

multiply (3.21) by P0(X(t) ∈ dy)h(y)/h(x) and note that limx→0 Schurm(x) = 0 unless m =
(0, 1, . . . , p−1) in which case Schurm(x) = 1. Recall that ft(0) = 1 to derive that (3.13) holds.
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Let us derive the asymptotics of Px(T > t). We multiply (3.21) by P0(X(t) ∈ dy) and integrate
on y ∈ W to obtain

Px(T > t) = h(x)
p∏

i=1

ft(xi)
∑

0≤m1<···<mp

Schurm(x)
p∏

i=1

ami(t)×

×
∫

W

P0(X(t) ∈ dy)h(y) Schurm(y).

(3.23)

Because of the assumption that limt→∞ am+1(t)/am(t) = 0 for any m ∈ N0 , it is clear that in
the limit t → ∞ only the term for m = (0, 1, . . . , p−1) survives. Recall that limt→∞ ft(x) = 1
to derive (3.14). �

The case of Brownian motion on I = R is a special case of Lemma 3.2 with ft(x) = e−x2/(2t) and
am(t) = t−m/m!. In (3.13) we recover Weyl’s formula for the joint density of the eigenvalues
of the Gaussian unitary ensemble (see [Me91]). The upper tail asymptotics given by (3.14)
were previously obtained in [Gr00].
Let us check that the BESQd satisfies the assumptions of Lemma 3.2. The transition density
is given [BS96] by

pt(x, y) =


1
2t

(y

x

)ν/2
e−(x+y)/(2t)Iν

(√
xy

t

)
, if x > 0,

yν

(2t)ν+1Γ(ν + 1)
e−y/(2t), if x = 0,

(3.24)

where ν = d
2 − 1 is the index of BESQd, and Γ denotes the Gamma function and

Iν(z) =
∞∑

m=0

(
z
2

)2m+ν

m! Γ(ν + m + 1)
(3.25)

is the modified Bessel function of index ν. Hence, (3.12) is satisfied with ft(x) = e−x/(2t) and
am(t) = Γ(ν + 1)[m!Γ(ν + m + 1)]−1(2t)−2m. In particular

Ct =
Γ(ν + 1)p

(2t)p(p−1)

p∏
i=1

1
Γ(i)Γ(ν + i)

. (3.26)

Hence, we recover (1.6) from (3.13), with explicit identification of the normalisation constant.
The right hand side of (3.14) is identified as follows. Use (3.24) and make the change of
variable z = y/(2t) to get that

E0

[
h(X(t))1l{X(t) ∈ W}] =

(2t)
p
2 (p−1)

Γ(ν + 1)p

∫
W

h(z)
p∏

i=1

[
zν

i e−zi
]

dz. (3.27)

Now use Selberg’s integral (see (17.6.5) in [Me91]) to finally deduce that (3.14) reads

Px(T > t) ∼ (2t)−
p
2 (p−1)h(x)K, t → ∞, (3.28)

where

K =

∫
W h(z)

∏p
i=1

[
zν

i e−zi
]

dz∏p
i=1

[
Γ(i)Γ(ν + i)

]
=

Γ(ν + 1)
Γ(ν + 1 + p

2 )
1

p!Γ(3+p
2 )Γ(3

2 )

p∏
j=1

Γ(ν + 1 + p
2 )Γ(3+j

2 )
Γ(j)Γ(ν + j)

.

(3.29)
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