
Markov Processes Relat. Fields 13, 251–266 (2007)
Markov MPRF&��

��
Processes
and
Related Fields
c©Polymat, Moscow 2007

On the Free Energy of a Directed

Polymer in a Brownian Environment

J. Moriarty and N. O’Connell

Department of Mathematics and BCRI, University College Cork, Ireland

Dedicated to the memory of J.T. Lewis

Abstract. We prove a formula conjectured in [14] for the free energy density
of a directed polymer in a Brownian environment in 1 + 1 dimensions.

Keywords: directed polymers, exponential functionals of Brownian motion, quasi-

reversibility, Brownian queues, large deviations

AMS Subject Classification: 60K37, 82D30, 60K25, 60J65

1. Introduction

Let B(1), B(2), . . . be independent standard one-dimensional Brownian mo-

tions. Denote the increments of B(i) by B
(i)
(s,t) = B

(i)
t − B

(i)
s .

For β ∈ R set

Zn(β) =

∫

0<s1<...<sn−1<n

ds1 . . . dsn−1 exp
{

β(B
(1)
(0,s1) + . . . + B

(n)
(sn−1,n))

}

.

(1.1)

This is the partition function for a continuous model of a directed polymer in a
Brownian environment in 1 + 1 dimensions. In the paper [14], using queueing-
theoretic ideas in the context of geometric functionals of Brownian motion,
certain limiting results were obtained which led the authors to conjecture an
explicit formula for the free energy density

lim
n→∞

1

n
log Zn(β), (1.2)
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namely that it should be given by, almost surely,

f(β) =

{

−(−Ψ)∗(−β2) − 2 log |β| : β 6= 0,
1 : β = 0,

(1.3)

where Ψ(m) ≡ Γ′(m)/Γ(m) is the restriction of the digamma function to (0,∞),
and (−Ψ)∗ is the convex dual of the function −Ψ. The aim of this paper is to
give a rigorous proof of this conjecture. The proof uses tools from large deviation
theory. As a corollary we give a new proof that c ≥ 2, where

lim
n→∞

1

n
Ln(n) = c a.s. (1.4)

and

Ln(t) = sup
0≤s1≤...≤sn−1≤t

B
(1)
(0,s1) + . . . + B

(n)
(sn−1,t).

It was proved using direct methods in [11] that c = 2, where the authors also
describe how the result may be deduced from the theory of random matrices.

The directed polymer model we have discussed here, and for which we have
computed the free energy density, is a continuous version of the classical two-
dimensional directed polymer, where it is not known how to compute the free
energy density (see, for example, [4, 6]). Recent work on a continuous model
different to this can be found in [5].

In the next section we recall the framework which was developed in [14]
to extend some standard constructions from queueing theory to the context of
geometric functionals of Brownian motion, and explain how this leads to the
conjectured formula for the free energy density. Section 3 is devoted to the
proof of the main result. In Section 4 we prove that f is analytic and strictly
convex, and record a large deviation principle that we will use in Section 5 to
prove (1.4).

2. Generalised Brownian queues

In this section we recall the framework which was developed in [14] to extend
some standard constructions from queueing theory to the context of geometric
functionals of Brownian motion, and explain how this leads to the conjectured
formula for the free energy density.

The generalised Brownian queue is characterised as follows. Let B and C
be two independent standard Brownian motions indexed by the entire real line,
and write

B(s,t) = Bt − Bs, C(s,t) = Ct − Cs.
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Fix m > 0 and, for t ∈ R, set

r(t) = log

t
∫

−∞

ds exp{B(s,t) + C(s,t) − m(t − s)},

f(s, t) = B(s,t) + r(s) − r(t),

g(s, t) = C(s,t) + r(s) − r(t),

and define f : R → R by f(t) = f(0, t).
To put this in context, the ‘Brownian queue’ is defined similarly but with

‘log
∫

exp’ replaced by ‘sup’ (see, for example, [14]). The usual M/M/1 queue
is defined similarly to the Brownian queue but with Brownian motions replaced
by Poisson counting processes. Thus the Brownian motions Bt and mt − Ct

can be thought of, respectively, as the arrivals and service processes, r as the
queue-length process and f as the output, or departure, process.

In [14] it is shown, using results of Matsumoto and Yor [12, 13], that the
generalised Brownian queue is quasi-reversible, that is: f is a standard Brow-
nian motion, and {f(s), s ≤ t} is independent of r(t). We can thus consider a
sequence of generalised Brownian queues in tandem and expect this ‘queueing
network’ to have nice properties (analogous to the ‘product-form solutions’ of
classical queueing theory).

Let B, B(1), B(2), . . . be a sequence of independent standard Brownian mo-
tions, each indexed by R, and let m > 0 be a fixed constant. For −∞ < s ≤
t < ∞, set

r1(t) = log

t
∫

−∞

ds exp{B(s,t) + B
(1)
(s,t) − m(t − s)},

f1(s, t) = B(s,t) + r1(s) − r1(t),

g(s, t) = B
(1)
(s,t) + r1(s) − r1(t),

for each k = 2, 3, . . . set

rk(t) = log

t
∫

−∞

ds exp{fk−1(s, t) + B
(k)
(s,t) − m(t − s)},

fk(s, t) = fk−1(s, t) + rk(s) − rk(t),

and for all k define fk : R → R by fk(t) = fk(0, t).
Note that r1(t) is clearly stationary in t; to see that r1(0) < ∞ almost surely

simply note that, with probability one, B(s,0) + B
(1)
(s,0) + ms < ms/2 for all s

sufficiently negative (by Strassen’s law of the iterated logarithm, for example).
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In fact, r1(0) has the same law as − log Zm, where Zm is gamma-distributed
with parameter m: this is Dufresne’s identity [7, 8].

We first state the quasi-reversibility property, as presented in [14].

Theorem 2.1.

1. f1 and g are independent standard Brownian motions indexed by R.

2. For each t ∈ R, {(f1(s), g(s)),−∞ < s ≤ t} is independent of {r1(s),
s ≥ t}.

It follows from Theorem 2.1 that r1(0), r2(0), . . . is a sequence of i.i.d. random
variables, each distributed as − logZm. By construction, we have

n
∑

k=1

rk(0) = log

[

0
∫

−∞

du exp(B(u,0) + mu) (2.1)

×
∫

u<s1<...<sn−1<0

ds1 . . . dsn−1 exp{B(1)
(u,s1)

+ . . . + B
(n)
(sn−1,0)}

]

.

Applying the strong law of large numbers, it can be deduced (see [14] for
details) that:

Theorem 2.2. For each m > 0:

lim
n→∞

1

n
log

∫

−∞<u<s1<...<sn−1<0

du ds1 . . . dsn−1

× exp{mu + B
(1)
(u,s1)

+ . . . + B
(n)
(sn−1,0)} = −Ψ(m)

almost surely, where

Ψ(m) = E log Zm = Γ′(m)/Γ(m)

is the digamma function (and Γ is the Gamma function).

Theorem 2.2 can be interpreted as follows. Let B denote the σ-field generated
by the Brownian motions B(1), B(2), . . ., and let τ1, τ2, . . . be the points of a
unit-rate Poisson process on R+, independent of B. For t0, t1, . . . , tn ∈ R define

En(t0, t1, . . . , tn) = B
(1)
(t0,t1)

+ . . . + B
(n)
(tn−1,tn),

F m
n (t0, t1, . . . , tn−m+1) = exp

(

B
(n)
(t0,t1) + . . . + B

(m)
(tn−m,tn−m+1)

)

,

Fn = F 1
n .

By Brownian scaling, Theorem 2.2 is equivalent to:
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Theorem 2.3. For θ 6= 0,

lim
n→∞

1

n
log E

[

exp(θEn(0, τ1, . . . , τn)) | B
]

= −2 log |θ| − Ψ(1/θ2),

almost surely.

Thus, if we set

Λ(θ) =

{

−2 log |θ| − Ψ(1/θ2), θ 6= 0,
0, θ = 0,

we have

lim
n→∞

1

n
log E

[

exp(θEn(0, τ1, . . . , τn)) | B
]

= Λ(θ),

almost surely. From the asymptotic expansion

Ψ(x) ∼ log x − 1

2x
−

∞
∑

k=1

B2k

2kx2k
(2.2)

as x → ∞ (see, for example, [1]), we have that Λ is finite and differentiable every-
where, with Λ(0)=Λ′(0)=0. It follows that the sequence (1/n)En(0, τ1, . . . , τn)
satisfies the following conditional large deviation principle:

Theorem 2.4. Given B, (1/n)En(0, τ1, . . . , τn) satisfies a large deviation prin-

ciple with good rate function

Λ∗(x) = sup
θ∈R

[xθ − Λ(θ)]

almost surely.

This is a quenched large deviation principle, associated with the condi-
tional law of large numbers. For example, Theorem 2.4 implies that given
B, (1/n)En(0, τ1, . . . , τn) → 0 almost surely. Another implication is that for
any x > 0,

lim
n→∞

1

n
log P

(

En(0, τ1, . . . , τn) > xn | B
)

= −Λ∗(x)

almost surely. For two other related large deviation principles see [14].
We will now describe how this relates to the Brownian directed polymer

model. It is shown in Lemma 3.1 using Kingman’s subadditive ergodic theorem
that there exists a function γ : R → R such that given x < 0,

lim
n→∞

1

n
log

∫

xn<s1<...<sn−1<0

Fn(xn, s1, . . . , sn−1, 0) ds1 . . . dsn−1 = γ(x) (2.3)
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almost surely, and it is shown in Lemma 3.4 that γ is a concave function
on (−∞, 0). Therefore, by (2.1), Theorem 2.2 and Laplace’s method, we would
expect

−Ψ(m) = sup
x<0

[mx + γ(x)]

= (−γ)∗(m)

and hence by inversion, γ = −(−Ψ)∗. The free energy density for our model
of a directed polymer in a Brownian environment in 1 + 1 dimensions, defined
in (1.2), can then be expressed in terms of the digamma function by first using
the Brownian scaling property:

lim
n→∞

1

n
log Zn(β) = γ(−β2) − 2 log |β|

= −(−Ψ)∗(−β2) − 2 log |β|.

The heuristic argument above is made rigorous by the following theorem,
which is the main result of this paper.

Theorem 2.5. Almost surely,

lim
n→∞

1

n
log Zn(β) = f(β)

where f is defined by (1.3), Ψ(m) ≡ Γ′(m)/Γ(m) is the restriction of the

digamma function to (0,∞), and (−Ψ)∗ is the convex dual of the function −Ψ.

3. Proofs

We begin by defining for t ≥ 0 and x < 0

Ln(t) = sup
0≤s1≤...≤sn−1≤t

En(0, s1, . . . , sn−1, t), (3.1)

km,n(x) = log

∫

xn<s1<...
...<sn−m<xm

F m+1
n+1 (xn, s1, . . . , sn−m, xm) ds1 . . . dsn−m,

Zn(x) =

∫

xn<s1<...<sn−1<0

Fn(xn, s1, . . . , sn−1, 0) ds1 . . . dsn−1, (3.2)

γn(x) =
1

n
logZn(x). (3.3)

and recording the following lemma:
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Lemma 3.1.

1. There exists a constant c ∈ R such that (1/n)Ln(nt) → c
√

t almost surely

and in expectation.

2. There exists a function γ : (−∞, 0) → R such that given x < 0,

k0,n(x)/n → γ(x) (3.4)

almost surely.

3. The function γ is continuous on (−∞, 0).

4. Given x < 0, limn→∞ γn(x) = γ(x) almost surely.

Proof. The first part of the lemma follows from Brownian scaling and Kingman’s
subadditive ergodic theorem (see [11] for details). For the second part, observe
that

k0,m(x) + km,n(x) = log

∫

xn<s1<...<sn<0
sn−m<xm<sn−m+1

Fn+1(xn, s1, . . . , sn, 0)ds1 . . . dsn

≤ k0,n(x)

and k is therefore superadditive for fixed x. By construction we have the required
conditions for Kingman’s subadditive ergodic theorem, and so we may define a
function γ : (−∞, 0) → R by (3.4). For the third part we have by Brownian
scaling, for x < 0 and δ > x

k0,n(x − δ) =d log

∫

0<s1<...
...<sn<n

exp
(
√
−x + δEn+1(0, s1, . . . , sn, n)

)

ds1 . . . dsn

+ n log(−x + δ)

≤ log

∫

0<s1<...
...<sn<n

exp
(√

−xEn+1(0, s1, . . . , sn, n)
)

ds1 . . . dsn

+ (
√
−x + δ −

√
−x)Ln+1(n) + n log(−x + δ)

=d k0,n(x) + (
√
−x + δ −

√
−x)Ln+1(n)

− n log(−x) + n log(−x + δ), (3.5)

where =d denotes equality in distribution. Let c be the constant in the first
part of this lemma; then by Brownian scaling and Slutsky’s Lemma (see for
example [9]), (1/n)Ln+1(n) ⇒ c. By the second part of this lemma and (3.5),

γ(x − δ) ≤ γ(x) + c(
√
−x + δ −

√
−x) − log(−x) + log(−x + δ).
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By symmetry,

Vn := inf
0≤s1≤...≤sn−1≤n

En(0, s1, . . . , sn−1, n) =d −Ln(n) (3.6)

and so we have similarly

γ(x − δ) ≥ γ(x) − c(
√
−x + δ −

√
−x) − log(−x) + log(−x + δ).

So

|γ(x − δ) − γ(x)| ≤ c|
√
−x + δ −

√
−x| + | log(−x + δ) − log(−x)|. (3.7)

For the fourth part we have

k0,n(x) ≤ log

(

e2B(n,0,x)

∫

xn<s1<...<sn<0

Fn(xn, s2, . . . , sn, 0) ds1 . . . dsn

)

≤ log

(

xne2B(n,0,x)

∫

xn<s2<...<sn<0

Fn(xn, s2, . . . , sn, 0) ds2 . . . dsn

)

= log
(

xne2B(n,0,x)Zn(x)
)

where for y ≤ x ≤ 0,

B(n, x, y) = max
i=n−1,n,n+1

sup
yn≤r<s≤xn

|B(i)(r, s)|. (3.8)

From Borell’s inequality and the Borel –Cantelli Lemma, there exists a null
set N such that on its complement N c, B(n, x, y)/n → 0 for all x, y, so

γ(x) ≤ lim inf
n→∞

γn(x) a.s.

Now for ε > 0,

k0,n(x + ε) ≥ log

(

e−2B(n,0,x+ε)

∫

(x+ε)n<s1<xn
xn<s2<...<sn<0

Fn(xn, s2, . . . , sn, 0) ds1 . . . dsn

)

= log
(

εne−2B(n,0,x+ε)Zn(x)
)

so
γ(x + ε) ≥ lim sup

n→∞

γn(x) a.s.

and the result follows by the third part of this lemma. 2

Let Q+ = Q ∩ (0,∞), Q− = −Q+.
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Lemma 3.2. There exists a null set M such that the following statement holds

on its complement Mc: limn→∞ γn(x) = γ(x) and lim infn→∞ γn(y) ≥ γ(x) for

every x ∈ Q− and y < x.

Proof. Let x ∈ Q− and y < x. From (3.2) we have

Zn(y) ≥
∫

xn<s1<...<sn−1<0

Fn(yn, s1, . . . , sn−1, 0) ds1 . . . dsn−1

= exp{B(n)
(yn,xn)}Zn(x). (3.9)

By Lemma 3.1 there exists a null set Nx such that on N c
x ,

lim
n→∞

γn(x) = γ(x).

With N as in the proof of Lemma 3.1, let M = N ∪ ⋃

x∈Q
−

Nx. 2

Lemma 3.3. Almost surely, limn→∞ γn(x) = γ(x) for all x < 0.

Proof. Choose x, y ∈ Q− with y < x. Then if z ∈ [y, x],

Zn(z) =

∫

zn<s1<...<sn−1<0

Fn(zn, s1, . . . , sn−1, 0) ds1 . . . dsn−1

= I1(n, z) + I2(n, z)

where

I1(n, z) = exp{B(n)
(zn,xn)}Zn(x)

I2(n, z) =

xn
∫

s1=zn

∫

s1<...<sn−1<0

Fn−1(s1, . . . , sn−1, 0) ds2 . . . dsn−1

× exp{B(n)
(zn,s1)

} ds1.

Now I1(n, z) ≤ eB(n,x,y)Zn(x) and

I2(n, z) ≤ (x − z)ne2B(n,x,y)Zn−1

( ny

n − 1

)

,

therefore

sup
z∈[y,x]

Zn(z) ≤ eB(n,x,y)Zn(x) + (x − y)ne2B(n,x,y)Zn−1

( ny

n − 1

)

. (3.10)
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Take M as in the proof of Lemma 3.2. Now

Zn−1

( ny

n − 1

)

≥ e−B(n,0,y)Zn−1(y),

so lim infn→∞(1/n) logZn−1(ny/n − 1) ≥ γ(y) on Mc; and if ε ∈ Q− then

Zn(y + ε) ≥
∫

(y+ε)n<s1<yn
yn<s2<...<sn−1<0

Fn−1(yn, s2, . . . , sn−1, 0) ds1 . . . dsn−1 e−2B(n,0,y+ε)

= (−ε)ne−2B(n,0,y+ε)Zn−1

( ny

n − 1

)

hence

γ(y + ε) ≥ lim sup
n→∞

1

n
logZn−1

( ny

n − 1

)

on Mc, and letting ε → 0 in Q gives limn→∞(1/n) logZn−1(ny/n − 1) = γ(y)
on Mc. Then by (3.10) and the proof of Lemma 3.2, on Mc

γ(x) ≤ lim inf
n→∞

1

n
log inf

z∈[y,x]
Zn(z) ≤ lim sup

n→∞

1

n
log sup

z∈[y,x]

Zn(z)

≤ lim sup
n→∞

1

n
log eB(n,x,y)Zn(x) ∨ lim sup

n→∞

1

n
log(x − y)

× ne2B(n,x,y)Zn−1

( ny

n − 1

)

= γ(x) ∨ γ(y) = γ(y). (3.11)

The result now follows from (3.7). 2

Lemma 3.4. The function γ is concave.

Proof. For x, y < 0 and α ∈ (0, 1),

γn(αy + (1 − α)x) ≥ [αn]

n
Gn +

kn

n
Hn (3.12)

where

Gn =
1

[αn]
log

∫

(αy+(1−α)x)n<s1<...

...<s[αn]−1<(1−α)xn

F kn

n

(

(αy + (1 − α)x)n, s1, . . .

. . . , s[αn]−1, (1 − α)xn
)

ds1 . . . ds[αn]−1

kn =n − [αn] + 1

Hn =
1

kn

log

∫

(1−α)xn<s[αn]<...

...<sn−1<0

Fkn

(

(1 − α)xn, s[αn], . . . , sn−1, 0
)

ds[αn] . . . dsn−1.
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Now

Gn =d γ[αn]

( αn

[αn]
y
)

,

Hn = γkn

( (1 − α)n

kn

x
)

.

Choose w, u ∈ Q− with w < x < u, and choose ε, δ > 0. Then there exists
n0 ∈ N such that for all n ≥ n0, w < ((1−α)n/kn)x < u. Also, by (3.11) there
exists n1 ∈ N such that for any n ≥ n1,

P

(

γ(u) − ε ≤ 1

n
log inf

z∈[w,u]
Zn(z) ≤ 1

n
log sup

z∈[w,u]

Zn(z) ≤ γ(w) + ε
)

> 1 − δ.

Therefore if kn ≥ n0 ∨ n1,

P
(

γ(u) − ε ≤ Hn ≤ γ(w) + ε
)

> 1− δ

and therefore Hn ⇒ γ(x). Similarly Gn ⇒ γ(y), and hence by Slutsky’s Theo-
rem

[αn]

n
Gn +

kn

n
Hn =⇒ αγ(y) + (1 − α)γ(x).

Hence by (3.12),

γ(αy + (1 − α)x) ≥ αγ(y) + (1 − α)γ(x).

2

Proof of Theorem 2.5. Choose m > 0. Define a probability density function on
(−∞, 0) by

K
(m)
n (dx) =

1

Ξn(m)
expn(mx + γn(x)) dx

where

Ξn(m) =

0
∫

−∞

exp n(mx + γn(x)) dx.

In the nomenclature of statistical physics, K
(m)
n is the Kac density and Ξn(m)

is the grandcanonical partition function. Theorem 2.2 says that given θ > −m,
the convergences

1

n
log Ξn(m) −→ −Ψ(m), (3.13)

1

n
log

0
∫

−∞

enθx
K

(m)
n (dx) −→ Ψ(m) − Ψ(m + θ) =: Λm(θ)
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hold almost surely as n → ∞. Choose ε > 0; then since Λ∗
m(Λ′

m(0) + ε) and
Λ∗

m(Λ′
m(0) − ε) are strictly positive, we can apply the Chernoff bound to give

K
(m)
n ((Λ′

m(0)− ε, Λ′
m(0)+ ε)) → 1 almost surely as n → ∞. Letting ε → 0 in Q

gives that K
(m)
n is almost surely concentrated on Λ′

m(0) = −Ψ′(m) as n → ∞.
Therefore for any x ∈ Q− and ε > 0, using (3.9) we have

Ξn(m) ≥
x

∫

x−ε

expn(my + γn(y)) dy

≥ exp{n(m(x − ε) + γn(x))}
x

∫

x−ε

exp{B(n)
(yn,xn)} dy

≥ ε exp
{

n(m(x − ε) + γn(x)) − B(n, x, x − ε)
}

.

Therefore by Lemma 3.3 and (3.13),

−Ψ(m) ≥ m(x − ε) + γ(x)

and we may let ε → 0 and appeal to the regularity of Ψ to conclude that for
all x < 0

γ(x) ≤ inf
m∈Q+

(−mx − Ψ(m))

= −(−Ψ)∗(x).

For the reverse inequality we note that for x ∈ Q− and ε ∈ (0,−x) we may
choose m > 0 such that −Ψ′(m) = x + ε (see for example [1,2]). Then by (3.9),

K
(m)
n ((x, x + 2ε)) =

1

Ξn(m)

x+2ε
∫

x

exp{n(my + γn(y))} dy

≤ 2ε

Ξn(m)
exp

{

n(m(x + 2ε) + γn(x)) − B(n, x + 2ε, x)
}

.

Therefore using Lemma 3.3,

0 = lim
n→∞

1

n
log K

(m)
n ((x, x + 2ε))

≤ m(x + 2ε) + γ(x) + Ψ(m)

almost surely, in which case we may let ε → 0 to conclude that

γ(x) ≥ inf
m>0

(−mx − Ψ(m))

= −(−Ψ)∗(x).
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Therefore γ(x) = −(−Ψ)∗(x). Finally (1.1), the last part of Lemma 3.1 and
Brownian scaling allow us to conclude that almost surely,

lim
n→∞

1

n
log Zn(β) =

{

γ(−β2) − 2 log |β| : β 6= 0
1 : β = 0

as required. 2

4. Analyticity of the free energy density and a large deviation prin-

ciple

Theorem 4.1. The function f defined in (1.3) is analytic and strictly convex

on R, f ′(0) = 0, and limβ→∞ f(β)/β = 2.

Proof. For x < 0 we have

(−Ψ)∗(x) = sup
θ>0

[xθ + Ψ(θ)]

Denoting by Ψn the nth derivative of the function Ψ, and noting that Ψ2 is
strictly negative everywhere (see for example [2]), we have

(−Ψ)∗(x) = xΨ−1
1 (−x) + Ψ(Ψ−1

1 (−x))

and since Ψ1 is an invertible analytic function with nonzero derivative, its inverse
is analytic. Therefore f is analytic everywhere except possibly at 0.

To investigate the behaviour of f near 0, let a = Ψ−1
1 (β2). Then

f(β) = aΨ1(a) − Ψ(a) − log Ψ1(a). (4.1)

Now a → ∞ as β → 0, and from [1] we have

Ψ1(x) ∼ 1

x
+

1

2x2
+

1

6x3
(x → ∞), (4.2)

therefore recalling (2.2),

f(β) = 1 + O(a−1) (β → 0).

One further application of (4.2) to this expression gives f ′(0) = 0.
Since f − 1 is an asymptotic logarithmic moment generating function (see

the proof of Lemma 4.1 below), f is convex. The regularity of Ψ implies further
that f is strictly convex.

The power series

log Γ(1 + z) = − log(1 + z) + z(1 − ξ) +

∞
∑

n=2

(−1)n[ζ(n) − 1]zn/n
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where ξ is Euler’s constant and ζ is the Riemann Zeta Function, is valid for
|z| < 2 [1]; therefore, since Ψ(z) = d log Γ(z)/dz, it may be differentiated to
give power series for Ψ and Ψ1 in a neighbourhood of the origin. Substituting
in (4.1) and letting a → 0, we obtain limβ→∞ f(β)/β = 2. 2

Lemma 4.1. Let τ1 ≤ . . . ≤ τn−1 be the order statistics for n− 1 independent

random variables having the uniform distribution on the interval [0, n]. Almost

surely, conditional on B, the random variable (1/n)En(0, τ1, . . . , τn−1, n) satisfies

a large deviation principle with rate function (f − 1)∗.

Proof. Choose β ∈ R; then by (1.1)

E
[

exp{βEn(0, τ1, . . . , τn−1, n)} | B
]

=
(n − 1)!

nn−1
Zn(β)

hence by Stirling’s formula and Theorem 2.5,

lim
n→∞

1

n
log E

[

exp{βEn(0, τ1, . . . , τn−1, n)} | B
]

= f(β) − 1 (4.3)

almost surely. Now if α < ν then Zn(α) ≤ exp{−(ν − α)Vn}Zn(ν), where Vn

was defined in (3.6); hence for α, β ∈ Q with β > α

f(α) ≤ lim inf
n→∞

1

n
log inf

ν∈(α,β)
Zn(ν) + (β − α)c

≤ lim sup
n→∞

1

n
log sup

ν∈(α,β)

Zn(ν) + (β − α)c

≤ f(β) + 2(β − α)c

almost surely, where c was defined in Lemma 3.1. Therefore by the continuity
of f , there exists a null set N such that on N c, the convergence in (4.3) holds
for all β ∈ R. 2

5. Connection with random matrices and a Brownian directed per-

colation problem

It was shown in [11] that with Ln defined as in (3.1), for each t ≥ 0,

lim
n→∞

1

n
Ln(nt) = 2

√
t

almost surely. In the notation of Lemma 3.1 this says that c = 2. This result
can also be deduced from random matrix theory using the fact [3,10] that Ln(1)
has the same law as the largest eigenvalue of a n× n GUE random matrix. We
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note here that the present work allows us to deduce the inequality c ≥ 2. Since
Ln(n) ≥ En(0, t1, . . . , tn−1, n) we have that given β,

1

n
Ln(n) ≥ 1

β

1

n
log E

[

exp{βEn(0, τ1, . . . , τn−1, n)} | B
]

almost surely. Letting n → ∞ and then β → ∞, using (4.3) and Theorem 4.1
gives the required inequality.
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