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Abstract
Sanov’s Theorem states that the sequence of empirical measures associated with

a sequence of i.d.d. random variables satisfies the large deviation principle (LDP)
in the weak topology with rate function given by a relative entropy. We present
a derivative which allows one to establish LDPs for symmetric functions of many
i.d.d. random variables under the condition that (i) a law of large numbers holds
whatever the underlying distribution and (ii) the functions are uniformly Lipschitz.
The heuristic (of the title) is that the LDP follows from (i) provided the functions
are ‘sufficiently smooth’. As an application, we obtain large deviations results for
the stochastic bin-packing problem.

1. The heuristic
We begin with some definitions. Let ! be a Hausdorff topological space with

Borel σ-algebra " and let µn be a sequence of probability measures on (!,"). A
rate function is a non-negative lower semicontinuous function on !. We say that the
sequence µn satisfies the large deviation principle (LDP) with rate function I, if for
all B ∈ ",

− inf
x∈B◦

I(x) ! lim inf
n

1
n
log µn(B) ! lim sup

n

1
n
log µn(B) ! − inf

x∈B
I(x).

Here B◦ and B denote the interior and closure of B, respectively. Alternatively, if
Zn is a sequence of realizations of the µn, we can say that the sequence Zn satisfies
the LDP. A rate function is good is its level sets {x: I(x) ! a}, a " 0, are compact.
Let X1, X2, . . . be a sequence of independent random variables taking values in a

compact Polish space (E, d) with common law µ. Suppose that, for each n, fn:En →
R is symmetric and measurable and that, for any underlying distribution µ, we have
a strong law of large numbers:

fn(X1, . . . , Xn)
a.s.−→ f (µ).

Then, provided the fn are sufficiently smooth, we might hope to deduce the existence
of a large deviation principle for the sequence fn(X1, . . . , Xn) with rate function given
by

J(y) = inf {H(ν|µ): f (ν) = y}, (1)



562 Neil O’Connell
where H(·|µ) is the relative entropy function:

H(ν|µ) =






∫

E

dν log
dν

dµ
ν ! µ

∞ otherwise.

This is a heuristic application of the (extended) contraction principle. It is useful
because, put simply, laws of large numbers are easier to prove than large deviation
principles. Some readers may find it reassuring to note that Cramér’s theorem can be
‘derived’ from this heuristic, letting the fns be the empirical means of real variables.
For a more interesting example, consider the stochastic bin-packing problem. Here

E is the unit interval and, for x ∈ [0, 1]n, nfn(x1, . . . , xn) is the smallest number of
unit-sized bins required to pack n objects of respective sizes x1, . . . , xn. It is well-
known, and easy to prove, that if X1, X2, . . . is a sequence of independent random
variables taking values in [0, 1] with common law µ, then

fn(X1, . . . , Xn)
a.s.−→ c(µ)

for some (finite) c(µ) called the ‘packing constant’. According to the heuristic, the
large deviation principle follows with rate function given by

J(y) = inf {H(ν|µ): c(ν) = y}.

We shall see later that this statement is (almost) correct.
In this short note we present a sufficient condition on the fn which is both simple

to check and justifies the above heuristic. We make no attempt to prove the best
possible result; the aim of this note is to give the reader an understanding of where
the heuristic comes from and a feeling for the ‘type’ of condition under which we can
expect it to hold.

2. The main result
Let (E, d) be a compact Polish space. Denote by M1(E) the space of Borel proba-

bility measures on E, endowed with the weak topology, and byMµ
1 (E) the subspace

of probability measures which are absolutely continuous with respect to µ. Suppose
that, for each n, fn:En → R is symmetric and Borel measurable and satisfies the
Lipschitz condition

|fn(x)− fn(y)| ! K

n

n∑

i=1

d(xi, yi) (2)

for all x, y ∈ En, where K is a fixed constant (independent of n). We prove the
following. (For ν ∈M1(E), ν⊗n denotes the n-fold product measure on En.)

Theorem 1. In the above context: if there exists a mapping f :Mµ
1 (E)→ R such that

for each ν ∈Mµ
1 (E),

lim
n→∞

∫

R
x(ν⊗n ◦ f−1n )(dx) = f (ν),

then f is continuous (relative to the weak topology onMµ
1 (E)) and the sequence µ

⊗n◦f−1n

satisfies the LDP in R with good rate function given by

J(y) = inf {H(ν|µ): f (ν) = y}.
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Note that in the statement of the theorem we only need to assume mean conver-

gence of the probability measures ν⊗n ◦ f−1n ; under the smoothness condition (2),
this is in fact equivalent to the almost sure convergence discussed in the previous
section. We remark also that, under the hypotheses of the theorem, the function f
is in fact ρ-Lipschitz, where ρ is the MKO metric defined by (3) below.
We will begin by presenting the main ingredients of the proof. In what follows,

δx denotes the atomic measure with unit mass at the point x, supp µ denotes the
support of a measure µ and w−→ denotes weak convergence of probability measures.

Sanov’s Theorem. IfXn are independent random variables taking values in a Polish
space (E, d), with common law µ, and we set

Ln =
1
n

n∑

i=1

δXi ,

then the sequence Ln satisfies the LDP in M1(E) with good convex rate function
H(·|µ).

The extended contraction principle. Let ! be a Hausdorff topological space,
equipped with its Borel σ-algebra, and let µn be a sequence of probability measures
on !. Let # be another Hausdorff topological space. The usual contraction princi-
ple states that, if the sequence µn satisfies the LDP in ! with good rate function
I:! → R+ and f :! → # is a continuous mapping, then the sequence µn ◦ f−1
satisfies the LDP in # with good rate function given by

J(y) = inf {I(x): f (x) = y}.

The extended contraction principle applies to the case where we have, for each n, a
mapping fn:! → # and wish to obtain an LDP for the sequence µn ◦ f−1n . There
are a number of statements in the literature, dating back to the seminal paper of
Varadhan [15] (see also [2] and [12]) which are roughly equivalent to the following.
For completeness, we have included a short proof in the appendix.

Theorem 2. Assume that ! is a metric space. Suppose that for each n, supp µn ⊂
!n ⊂ !, fn:!n → # is continuous and the sequence µn satisfies the LDP in! with good
rate function I with effective domain contained in!∞ ⊂ !. Suppose also that there exists
a continuous mapping f :!∞ → # such that whenever xn ∈ !n and xn → x ∈ !∞, we
have fn(xn) → f (x). Then the sequence µn ◦ f−1 satisfies the LDP in # with good rate
function given by

J(y) = inf {I(x): f (x) = y}.

Combining the extended contraction principle with Sanov’s Theorem we obtain the
following corollary. Suppose that, for each n, fn:En → # is symmetric and Borel
measurable and there exists a continuous mapping f :Mµ

1 (E) → # such that when-
ever, for x ∈ E∞,

1
n

n∑

i=1

δxi
w−→ ν ∈Mµ

1 (E)
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we have fn(x1, . . . , xn)→ f (ν). Then the sequence µ⊗n ◦ f−1n satisfies the LDP in #
with good rate function given by

J(y) = inf {H(ν|µ): f (ν) = y}.

The Monge–Kantorovich–Ornstein (MKO) distance. Let (E, d) be a metric space. For
π ∈M1(E2), denote by π1 and π2 the respective marginals of π in M1(E). The MKO
distance between two probability measures µ, ν ∈M1(E) is defined by

ρ(µ, ν) = inf
{∫

E2
d(x, y)π(dx, dy):π ∈M1(E2), π1 = µ, π2 = ν

}
. (3)

This measure of distance was first introduced in 1781 by Monge [10] in studying the
most efficient way of transporting soil. It was later developed in a measure-theoretic
context byKantorovich [7] and Ornstein [11], among others (see [13] for an extensive
survey). For our purposes it is sufficient to note that, if (E, d) is compact, then ρ
metrises the weak topology on M1(E).

The Birkoff–von Neumann Theorem.1Recall that a non-negative matrix is doubly
stochastic if each of its rows and columns sum to one. A permutation matrix of order
n is a matrix of the form 1{σ(i) = j}, for some σ ∈ Sn. The Birkoff–von Neumann
theorem states that any doubly stochastic matrix can be written as a convex combination
of permutation matrices (see, for example [1, theorem 2·1·6]). Using this remarkable
fact, we immediately obtain the following formula for the MKO distance between two
empirical measures of the same order. For x ∈ En, set

ln(x) =
1
n

n∑

i=1

δxi

and denote by Sn the set of permutations on n elements.

Lemma 3. For x, y ∈ En,

ρ(ln(x), ln(y)) = inf
σ∈Sn

1
n

n∑

i=1

d(xi, yσ(i)).

Proof. For σ ∈ Sn, set

πσ =
1
n

n∑

i=1

δ(xi,yσ(i)).

We will argue that for any π ∈M1(E2), with π1 = ln(x) and π2 = ln(y), we have

π =
∑

σ∈Sn

βσπ
σ,

for some collection of non-negative numbers βσ with
∑

σ∈Sn

βσ = 1.

1 The Birkoff–von Neumann theorem has an interesting history: the theorem was stated and
proved in a different but equivalent formulation by König some 40 years before it was rediscovered
by Birkoff (1946) and von Neumann (1953), after whom it was named. References and related
history can be found in the preface of [8].
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Then we would have, noting that any π of the form

∑
σ∈Sn βσπ

σ has the correct
marginals ln(x) and ln(y),

ρ(ln(x), ln(y)) = inf
{∫

E2
d(x, y)π(dx, dy):π ∈M1(E2), π1 = ln(x), π2 = ln(y)

}

= inf

{
∑

σ∈Sn

βσ

∫

E2
d(x, y)πσ(dx, dy):βσ > 0,

∑

σ∈Sn

βσ = 1

}

= inf
σ∈Sn

∫

E2
d(x, y)πσ(dx, dy)

= inf
σ∈Sn

1
n

n∑

i=1

d(xi, yσ(i))

as required. To see that our claim is justified, note that if π ∈M1(E2), with π1 = ln(x)
and π2 = ln(y), we can write

π =
1
n

∑

1!i,j!n
aijδ(xi,yj ),

where A = (aij) is a doubly stochastic matrix. By the Birkoff–von Neumann Theo-
rem, there exist non-negative constants βσ with

∑
σ∈Sn βσ = 1, such that

aij =
∑

σ∈Sn

βσ1σ(i)=j

for all 1 ! i, j ! n. It follows that

π =
∑

σ∈Sn

βσπ
σ,

as claimed.

A concentration inequality. The final ingredient in the proof is the following elemen-
tary concentration inequality, which is an immediate consequence of the Azuma–
Hoeffding inequality for martingale differences (see, for example [9]).

Lemma 4. Let (E, d) be a bounded metric space and fn:En → R a symmetric (Borel
measurable) function which satisfies the Lipschitz condition

|fn(x)− fn(y)| ! K

n

n∑

i=1

d(xi, yi)

for all x, y ∈ En, whereK is a constant independent of n. LetX1, . . . , Xn be independent
random variables in E and write Xn = (X1, . . . , Xn) ∈ En. Then:

P (|fn(Xn)− Efn(Xn)| > t) ! 2 exp(−At2n),

where A = 1/2K2δ2 and δ = supx,y∈En d(x, y).

Proof of Theorem 1. By hypothesis, we have that for all x, y ∈ En,

|fn(x)− fn(y)| ! K

n

n∑

i=1

d(xi, yi).
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Recall that for x ∈ En,

ln(x) =
1
n

n∑

i=1

δxi .

By the symmetry of the fn, and Lemma 3, it follows that

|fn(x)− fn(y)| ! inf
σ∈Sn

K

n

n∑

i=1

d(xi, yσ(i))

= Kρ(ln(x), ln(y)).

If Yi are i.d.d. with common law ν ∈Mµ
1 (E) then, again by hypothesis, Efn(Y

n)→
f (ν). It follows, applying the concentration inequality (and Borel–Cantelli) that
fn(Y n) a.s.−→ f (ν). We also have, by Sanov’s Theorem (and Borel–Cantelli), that
ln(Y n) a.s.−→ ν (in the weak topology). In particular, there exists a sequence y ∈ E∞

such that fn(yn) → f (ν) and ln(yn)
w−→ ν. It follows that, for any x ∈ E∞ with

ln(xn)
w−→ ν we have, by the continuity of ρ,

|fn(xn)− fn(yn)| ! Kρ(ln(xn), ln(yn))→ 0,

and so fn(xn) → f (ν), as required. In order to apply the extended contraction
principle, it remains to check that f is weakly continuous. For µ, ν ∈Mµ

1 (E) we can
find sequences x, y ∈ E∞ such that ln(xn)

w−→ µ and ln(yn)
w−→ ν. From the above,

|f (µ)− f (ν)| = lim
n→∞

|fn(xn)− fn(yn)|

! lim sup
n→∞

Kρ(ln(xn), ln(yn))

= Kρ(µ, ν),

as required. Note that we have established more, namely that f is ρ-Lipschitz. This
completes the proof of the theorem.

3. Application to the stochastic bin-packing problem
The standard reference on bin-packing is the book of Coffman and Lueker [3]. For

x ∈ [0, 1]n, let nfn(x1, . . . , xn) be the smallest number of unit-sized bins required to
pack n objects of respective sizes x1, . . . , xn. It is well-known, and easy to prove, that
if X1, X2, . . . is a sequence of independent random variables taking values in [0, 1]
with common law µ, then

fn(X1, . . . , Xn)
a.s.−→ c(µ),

for some (finite) c(µ) called the ‘packing constant’. Mean convergence, which is all
we need to apply the theorem, follows from a simple subadditivity argument.
Concentration inequalities for this problem, using the Azuma–Hoeffding inequal-

ity, have been obtained by MacDiarmid [9]. Grimmett [6] obtains partial results on
the existence of an LDP, using subadditivity arguments. Here we obtain, using The-
orem 1, more refined large deviations results and a variational formula for the rate
function.
Suppose for the moment that µ is supported on a finite subset E of [0, 1] and let

ε > 0 be the minimal separation distance between elements ofE. Then the fns satisfy
the Lipschitz condition (2) on En withK = 1/ε and we can apply the theorem to get
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that the sequence fn(Xn) satisfies the LDP in [0, 1] with good rate function given
by

J(y) = inf {H(ν|µ): c(ν) = y}.

For general µ, we need to do some extra work. Let F denote the distribution
function associated with µ and for each positive integer m, set

µ+m =
1
m

m∑

j=1

δF−1(j/m)

and

µ−m =
1
m

m−1∑

j=0

δF−1(j/m).

Then, as Coffman and Lueker observe,

c(µ)− 1/m ! c(µ−m) ! c(µ) ! c(µ+m) ! c(µ) + 1/m.

We also have the related fact that µ⊗n ◦f−1n is majorized (respectively minorized) by
(µ+m)

⊗n ◦ f−1n (respectively (µ−m)
⊗n ◦ f−1n ). Combining these observations, we obtain

the following ‘large deviation principle’ (the following statement can be reformulated
as an LDP with respect to a coarser topology on the unit interval) for the sequence
µ⊗n ◦ f−1n : for c(µ) < q < 1,

lim sup
n→∞

1
n
log µ⊗n(f−1n [q, 1]) ! − lim sup

m→∞
inf {H(ν|µ): c(ν) " q − 1/m}

and

lim inf
n→∞

1
n
log µ⊗n(f−1n [q, 1]) " − lim inf

m→∞
inf {H(ν|µ): c(ν) > q + 1/m};

similar bounds hold for deviations to the left of c(µ). We give a step-by-step proof
of the first inequality; the others can be obtained similarly. First note that, since
µ⊗n ◦f−1n is majorized by (µ+m)

⊗n ◦f−1n , and the latter satisfies the LDP for any fixed
m,

lim sup
n→∞

1
n
log µ⊗n(f−1n [q, 1]) ! lim sup

n→∞

1
n
log (µ+m)

⊗n(f−1n [q, 1])

! − inf {H(ν|µ+m): c(ν) " q}
= − inf {H(ν+m|µ+m): c(ν+m) " q}
= − inf {H(ν|µ): c(ν+m) " q}
! − inf {H(ν|µ): c(ν) + 1/m " q}.

The first equality follows from the fact that H(ν|µ+m) = +∞ for ν " ν+m; the second
follows from the observation, due to Pinsker (see, for example [5, lemma 6·5·16]),
that H(ν|µ) " H(ν+m|µ+m) for any ν and µ; the final inequality follows from the fact
that c(ν+m) ! c(ν) + 1/m.
Note that, if J is continuous and increasing (respectively decreasing) to the right

(respectively to the left) of c(µ), the LDP holds with rate function J . To say more
than that requires a careful analysis of the variational problem and is beyond the
scope of this paper.
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4. Concluding remarks

The main result of this paper can be extended in many directions. In the case of
unbounded d, Sanov’s Theorem can be extended to hold in the corresponding MKO
topology under a moment condition such as

E exp [δd(X1, x)] <∞,

for some δ > 0 and x ∈ E; in this case Theorem 1 can be extended by assuming
fn(Xn) converges almost surely to f (µ) in the hypothesis. There are concentration
inequalities for unbounded random variables which one can appeal to. Extension to
functions taking values in a more general space is also possible.
An appealing feature of Theorem 1 is that we deduce the LDP under the type of

condition which is usually associated with concentration inequalities. The particular
Lipschitz condition we assume is, in a sense, the most naive in this class; it would
be interesting to see if the LDP can be obtained under more sophisticated (milder!)
conditions that have been developed in that area (see, for example [14]).
Finally, a word of caution. In many problems of combinatorial optimization, such

as the travelling salesman and longest increasing subsequence problems, the func-
tionals of interest are highly discontinuous and the heuristic discussed in this paper
breaks down. This is because such functionals depend on much finer properties of
the empirical measure than those which are asymptotically captured in the weak
topology. There is a recent paper by Deuschel and Zeitouni [5] which beautifully
illustrates this point for the longest increasing subsequence problem.

Appendix A. Proof of Theorem 2
Here we present a proof of Theorem 2.
Denote by N∗ the extended natural numbers and equip N∗ with the metric

h(n,m) =
∣∣∣∣
1
n
− 1
m

∣∣∣∣ ,

with the convention that 1/∞ = 0. Then (trivially) the sequence (µn, n) satisfies the
LDP in !⊗N∗, equipped with the product topology, with good rate function given
by

Ie(x, n) =
{

I(x) n =∞
∞ otherwise.

We can restrict this LDP to the (measurable) subspace
⋃

n∈N∗
!n ⊗ {n},

as the effective domain of Ie lies in this subspace (see, for example [4, lemma 4·1·5]).
The statement of the theorem now follows by applying the usual contraction prin-
ciple to the mapping

F :
⋃

n∈N∗
!n ⊗ {n}→ #,

defined by

F (x, n) =
{

fn(x) x ∈ !n, n <∞
f (x) n =∞.
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Note that we have used the fact that since ! is a metric space, we can check conti-
nuity of F using sequences.
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