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A PATH-TRANSFORMATION FOR RANDOM WALKS
AND THE ROBINSON-SCHENSTED CORRESPONDENCE

NEIL O’CONNELL

Abstract. The author and Marc Yor recently introduced a path-transfor-
mation G(k) with the property that, for X belonging to a certain class of
random walks on Zk+, the transformed walk G(k)(X) has the same law as the

original walk conditioned never to exit the Weyl chamber {x : x1 ≤ · · · ≤ xk}.
In this paper, we show that G(k) is closely related to the Robinson-Schensted
algorithm, and use this connection to give a new proof of the above repre-
sentation theorem. The new proof is valid for a larger class of random walks
and yields additional information about the joint law of X and G(k)(X). The
corresponding results for the Brownian model are recovered by Donsker’s theo-
rem. These are connected with Hermitian Brownian motion and the Gaussian
Unitary Ensemble of random matrix theory. The connection we make between
the path-transformation G(k) and the Robinson-Schensted algorithm also pro-
vides a new formula and interpretation for the latter. This can be used to
study properties of the Robinson-Schensted algorithm and, moreover, extends
easily to a continuous setting.

1. Introduction and summary

For k ≥ 2, denote the set of probability distributions on {1, . . . , k} by Pk. Let
(ξm, m ≥ 1) be a sequence of independent random variables with common distri-
bution p ∈ Pk and, for 1 ≤ i ≤ k, n ≥ 0, set

(1) Xi(n) = |{1 ≤ m ≤ n : ξm = i}|.

If p1 < · · · < pk, there is a positive probability that the random walk X =
(X1, . . . , Xk) never exits the Weyl chamber

(2) W = {x ∈ Rk : x1 ≤ · · · ≤ xk};

this is easily verified using, for example, the concentration inequality

P (|X(n)− np| > ε) ≤ Ke−c(ε)n,

where c(ε) and K are finite positive constants.
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In [36], a certain path-transformation G(k) was introduced with the property
that:

Theorem 1.1. The law of the transformed walk G(k)(X) is the same, assuming
p1 < · · · < pk, as that of the original walk X conditioned never to exit W .

We will recall the definition of G(k) in Section 2 below.
This was motivated by a desire to find a multi-dimensional generalisation of

Pitman’s representation for the three-dimensional Bessel process [37], and to un-
derstand some striking connections which were recently discovered by Baik, Deift
and Johansson [4], Baryshnikov [5] and Gravner, Tracy and Widom [21], between
oriented percolation and random matrices. For more background on this, see [33].

The proof of Theorem 1.1 given in [36] uses certain symmetry and reversibility
properties of M/M/1 queues in series; consequently, the transformation G(k) has a
“queueing-theoretic” interpretation.

In this paper we will show that the path-transformation G(k) is closely related to
the Robinson-Schensted correspondence. More precisely, if λ(n) = (λ1(n) ≥ · · · ≥
λk(n)) denotes the shape of the Young tableaux obtained, when one applies the
Robinson-Schensted algorithm with column-insertion, to the random word ξ1 · · · ξn,
then (for any realisation of X)

(G(k)(X))(n) = (λk(n), . . . , λ1(n)).

Immediately, this yields a new representation and formula for the Robinson-
Schensted algorithm, and this formula has a queueing interpretation. We will use
this representation to recover known, and perhaps not-so-well-known, properties of
the Robinson-Schensted algorithm.

Given this connection, Theorem 1.1 can now be interpreted as a statement about
the evolution of the shape λ(n) of a certain randomly growing Young tableau.
We give a direct proof of this result using properties of the Robinson-Schensted
correspondence. This also yields more information about the joint law of X and
G(k)(X), and dispenses with the condition p1 < · · · < pk.

As in [36], the corresponding results for the Brownian motion model can be
recovered by Donsker’s theorem. The path-transformation G(k) extends naturally
to a continuous setting and, given the connection with the Robinson-Schensted
algorithm, the continuous version can now be regarded as a natural extension of
the Robinson-Schensted algorithm to a continuous setting. As discussed in [36],
the results for Brownian motion have an interpretation in random matrix theory.
In particular, Theorem 1.1 yields a representation for the eigenvalue process as-
sociated with Hermitian Brownian motion as a certain path-transformation (the
continuous analogue of G(k)) applied to a standard Brownian motion. The new
results presented in this paper also yield new results in this context. This random
matrix connection comes from the well-known fact that the eigenvalue process as-
sociated with Hermitian Brownian motion can be interpreted as Brownian motion
conditioned never to exit the Weyl chamber W . We remark that a similar rep-
resentation for the eigenvalues of Hermitian Brownian motion was independently
obtained by Bougerol and Jeulin [11], in a more general context, by completely
different methods.

The outline of the paper is as follows. In the next section we recall the definition
of G(k) and record some of its properties. In section 3, we make the connection with
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the Robinson-Schensted algorithm, and briefly consider some immediate implica-
tions of this connection. A worked example is presented in section 4. In section 5,
we record some properties of the conditioned walk of Theorem 1.1 and extend its
definition beyond the case p1 < · · · < pk. In section 6, we prove a generalisation of
Theorem 1.1, in the context of Young tableaux, using properties of the RS corre-
spondence. In section 7, we define a continuous version of the path-transformation
and present the “Poissonized” analogues of the results of the previous section. In
section 8, we present the corresponding results for the Brownian model, and briefly
discuss the connection with random matrices. An application in queueing theory
is presented in section 9, and we conclude the paper with some remarks in section
10.

Some notation: Let b = {e1, . . . , ek} denote the standard basis elements in Rk.
For x, y ∈ Rk+ we will write xy = xy1

1 · · ·x
yk
k , xy = (x1y1, . . . , xkyk), |x| =

∑
i xi

and define x∗ ∈ Rk+ by x∗i = xk−i+1. Denote the origin in Rk by o.

Acknowledgements. Thanks to Francois Baccelli, Phillipe Biane, Phillipe Bou-
gerol and Marc Yor for many helpful and illuminating discussions on these topics.
This research was partly carried out during a visit, funded by the CNRS, to the
Laboratoire de Probabilités, Université Paris 6, and partly at the ENS, thanks to
financial support of INRIA.

2. The path-transformation

The support of the random walk X , which we denote by Πk, consists of paths
x : Z+ → Zk+ with x(0) = 0 and, for each n > 0, x(n)−x(n−1) ∈ b. Let ΠW

k denote
the subset of those paths taking values in W . It is convenient to introduce another
set Λk of paths x : Z+ → Zk+ with x(0) = 0 and x(n) − x(n − 1) ∈ {0, e1, . . . , ek},
for each n > 0.

For x, y ∈ Λ1, define x4 y ∈ Λ1 and x5 y ∈ Λ1 by

(3) (x4 y)(n) = min
0≤m≤n

[x(m) + y(n)− y(m)]

and

(4) (x5 y)(n) = max
0≤m≤n

[x(m) + y(n)− y(m)].

The operations 4 and 5 are not associative in general. Unless otherwise delineated
by parentheses, the default order of operations is from left to right; for example,
when we write x4 y4 z, we mean (x4 y)4 z.

The mappings G(k) : Λk → Λk are defined as follows. Set

(5) G(2)(x, y) = (x4 y, y5x)

and, for k > 2,

G(k)(x1, . . . , xk) = (x1 4x2 4 · · · 4xk,
G(k−1)(x2 5x1, x3 5 (x1 4x2), . . . , xk 5 (x1 4 · · · 4xk−1))).(6)

Note that G(k) : Πk → ΠW
k .

We will now give an alternative definition of G(k) which will be useful for making
the connection with the Robinson-Schensted correspondence.

Occasionally, we will suppress the dependence of functions on x, when the context
is clear: for example, we may write G(k) instead of G(k)(x), and so on.
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For k ≥ 2, define maps D(k) : Λk → Λk and T (k) : Λk → Λk−1 by

(7) D(k)(x) = (x1, x1 4x2, . . . , x1 4 · · · 4xk)

and

(8) T (k)(x) = (x2 5x1, x3 5 (x1 4x2), . . . , xk 5 (x1 4 · · · 4xk−1)).

For notational convenience, let D(1) be the identity transformation.
Note that the above definition is recursive: for i ≥ 2,

(9) D
(k)
i = D

(k)
i−1 4xi

and

(10) T
(k)
i−1 = xi 5D

(k)
i−1.

Alternatively, we can write

(11) (D(k)
i , T

(k)
i−1) = G(2)(D(k)

i−1, xi).

For each x ∈ Λk, consider the triangular array of sequences d(i) ∈ Λk−i+1,
1 ≤ i ≤ k, defined as follows. Set

d(1) = D(k)(x), t(1) = T (k)(x),

d(2) = D(k−1)(t(1)), t(2) = T (k−1)(t(1)),

and so on; for i ≤ k,
d(i) = D(k−i+1)(t(i−1)),

and for i ≤ k − 1,
t(i) = T (k−i+1)(t(i−1)).

Recalling the definition of G(k) given earlier, we see that

(12) G(k) = (d(1)
k , . . . , d

(k)
1 ).

Note also that, for each i ≤ k,

(13) G(i)(x1, . . . , xi) = (d(1)
i , . . . , d

(i)
1 ).

We will conclude this section by recording some useful properties and interpre-
tations of the operations 4 and 5 , and of the path-transformation G(k), for later
reference. We defer the proofs: these will be given in the appendix.

The following notation for increments of paths will be useful: for x ∈ Λk and
l ≥ n, set x(n, l) = x(l)− x(n).

The operations 4 and 5 have a queueing-theoretic interpretation, which we
will make strong use of when we make the connection with the Robinson-Schensted
correspondence in the next section. For more general discussions on “min-plus
algebra” and queueing networks, see [1].

Suppose (x, y) ∈ Π2, and consider a simple queue which evolves as follows. At
each time n, either x(n) − x(n − 1) = 1 and y(n) − y(n − 1) = 0, in which case a
new customer arrives at the queue, or x(n)− x(n− 1) = 0 and y(n)− y(n− 1) = 1,
in which case, if the queue is not empty, a customer departs (otherwise nothing
happens). The number of customers remaining in the queue at time n, which we
denote by q(n), satisfies the Lindley recursion

(14) q(n) = max{q(n− 1) + ε(n), 0},
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where ε(n) = x(n) − x(n− 1)− y(n) + y(n− 1). Iterating (14), we obtain

(15) q(n) = max
0≤m≤n

[x(m,n)− y(m,n)].

Thus, the number of customers d(n) to depart up to and including time n is given
by

(16) d(n) = x(n)− q(n) = (x4 y)(n).

We also have

(17) t(n) := x(n) + u(n) = (y5x)(n),

where
u(n) = y(n)− d(n)

is the number of times m ≤ n that y(m) − y(m − 1) = 1 and q(m − 1) = 0; in
the language of queueing theory, u(n) is the number of “unused services” up to
and including time n. (For this queue we refer to the points of increase of y as
“services”.)

Lemma 2.1. For (x, y) ∈ Λ2,

(18) x4 y + y5x = x+ y

and, if minl≥n[x(l)− (x4 y)(l)] = 0,

x(n)− (x4 y)(n) = max
0≤m≤n

[x(m,n) − y(m,n)]

= max
l≥n

[(x4 y)(n, l)− (y5x)(n, l)].

In particular, writing G(2) ≡ G(2)(x, y), we have

(19) (x(n), y(n)) = G(2)(n) + F (2)
(
G(2)(n, l), l ≥ n

)
,

where F (2) : D → Z2 is defined on

D = {z ∈ (Z2)Z+ : M(z) = max
n≥0

[z1(n)− z2(n)] <∞}

by F (2)(z) = (M(z),−M(z)).

In the queueing context described above, Lemma 2.1 states that x + y = d + t
and, if minl≥n q(l) = 0,

(20) q(n) = max
m≥n

[d(n,m)− t(n,m)].

The first identity is readily verified. The formula for q(n) in terms of the future
increments of d and t follows from the time-reversal symmetry in the dynamics of
the system: this formula is the dual of (15). When time is reversed, the roles played
by (x, y) and (d, t) are interchanged. This symmetry is at the heart of the proof of
Theorem 1.1 given in [36], where it is considered in an equilibrium context.

Note that, if we set z = y − x and s(n) = max0≤m≤n z(m), then

y5x− x4 y = 2s− z
and (20) is equivalent to the well-known identity

s(n) = min
l≥n

[2s(l)− z(l)].

This is familiar in the context of Pitman’s representation for the three-dimensional
Bessel process. Observe that the statement of Theorem 1.1 in the case k = 2 is
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equivalent to the following discrete version of Pitman’s theorem: if {Z(n), n ≥ 0}
is a simple random walk on Z with positive drift, started at 0, and we set S(n) =
max0≤m≤n Z(n), then 2S − Z has the same law as that of Z conditioned to stay
nonnegative. The usual statement of Pitman’s theorem can be recovered from
Theorem 8.1 below.

Lemma 2.1 has the following generalisation:

Lemma 2.2. For x ∈ Λk, writing G(k) ≡ G(k)(x), we have

(21) |G(k)| = |x|

and, if minl≥n(d(i)
j − d

(i)
j+1)(l) = 0, for 1 ≤ j < i < k (cn),

(22) x(n) = G(k)(n) + F (k)
(
G(k)(n, l), l ≥ n

)
,

where the function F (k) will be defined in the proof.

As we remarked earlier, the operations 4 and 5 are not associative. The follow-
ing identities are useful for manipulating complex combinations of these operations.

Lemma 2.3. For (a, b, c) ∈ Λ3 we have

(23) a5 (c4 b)5 (b5 c) = a5 b5 c

and

(24) a4 (c5 b)4 (b4 c) = a4 b4 c.

For example, (23) immediately yields

Lemma 2.4. For x ∈ Λk, G(k)
k (x) = xk 5 · · · 5x1.

3. Connection with the Robinson-Schensted algorithm

We refer the reader to the books of Fulton [18] and Stanley [40] for detailed
discussions on the Robinson-Schensted algorithm and its properties. The stan-
dard Robinson-Schensted algorithm takes a word w = a1 · · · an ∈ {1, 2, . . . , k}n
and proceeds, by “row-inserting” the numbers a1, then a2, and so on, to con-
struct a semistandard tableau P (w) associated with w, of size n with entries from
the set {1, 2, . . . , k}. If one also maintains a “recording tableau” Q(w), which is
a standard tableau of size n, the mapping from words {1, 2, . . . , k}n to pairs of
semistandard and standard tableaux of size n, the semistandard tableau having
entries from {1, 2, . . . , k} and both having the same shape, is a bijection: this is
the Robinson-Schensted correspondence. One can also do all of the above using
“column-insertion” instead of row-insertion to construct the semistandard tableau,
but still maintaining a recording tableau, and the resulting map is also a bijec-
tion. Column and row insertion are not the same thing, but they are related in
the following way: the semistandard tableau obtained by applying the Robinson-
Schensted algorithm, with column-insertion, to the word a1 · · · an is the same as the
one obtained by applying the Robinson-Schensted algorithm, with row-insertion, to
the reversed word an · · ·a1. The standard tableaux obtained in each case are also
related, but we do not need this and refer the reader to [18] for details.

Fix x ∈ Πk, let d(i) ∈ Λk−i+1, 1 ≤ i ≤ k, be the corresponding triangular array
of sequences defined in the previous section.
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For each n, construct a semistandard Young tableau as follows. In the first row,
put

d
(1)
1 (n) 1’s, d(2)

1 (n)− d(1)
1 (n) 2’s, . . . d(k)

1 (n)− d(k−1)
1 (n) k’s;

in the second row, put

d
(1)
2 (n) 2’s, d(2)

2 (n)− d(1)
2 (n) 3’s, . . . , d(k−1)

2 (n)− d(k−2)
2 (n) k’s,

and so on. In the final row, there are just d(1)
k (n) k’s. Denote this tableau by τ(n).

For example, if k = 3 and

(25)
d

(1)
1 (7) d

(1)
2 (7) d

(1)
3 (7)

d
(2)
1 (7) d

(2)
2 (7)
d

(3)
1 (7)

=
2 2 1

3 2
4

then the corresponding semistandard tableau τ(7) is

(26)
1 1 2 3
2 2
3

Let am be the sequence defined by am = i whenever

x(m)− x(m− 1) = ei.

Theorem 3.1. The semistandard tableau τ(n) is precisely the one that is ob-
tained when one applies the Robinson-Schensted algorithm, with column inser-
tion, to the word a1 · · ·an. In particular, if l(n) denotes the shape of τ(n), then
l(n)∗ = (G(k)(x))(n).

Proof. It will suffice to describe how the mapping G(k) acts on a typical element of
Πk, from an algorithmic point of view.

For each k ≥ 2, the maps D(k) : Λk → Λk and T (k) : Λk → Λk−1 can be defined
as follows. Fix x ∈ Πk and set d = D(k)(x), t = T (k)(x). Set d(0) = t(0) = 0, and
define the sequences d(n) and t(n) inductively on n. Suppose x(n)− x(n− 1) = ei;
that is, an = i. We need to treat the cases i = 1 and i = k separately.

Suppose i = 1. Then we set d(n) = d(n− 1) + e1 and t(n) = t(n− 1) + e1.
If i = k, and dk(n − 1) < dk−1(n − 1), we set d(n) = d(n − 1) + ek and

t(n) = t(n− 1).
If i = k, and dk(n − 1) = dk−1(n − 1), we set d(n) = d(n − 1) and t(n) =

t(n− 1) + ek−1.
Now suppose 1 < i < k. If di(n − 1) < di−1(n − 1), set d(n) = d(n − 1) + ei

and t(n) = t(n − 1) + ei; if di(n − 1) = di−1(n − 1), set d(n) = d(n − 1) and
t(n) = t(n− 1) + ei−1. Recall that D(1) is the identity transformation.

In queueing language, we have just constructed a series of k queues in tandem.
Initially there are infinitely many customers in the first queue and the other queues
are all empty. At each time n, if xi(n+1)−xi(n) = 1 (or, equivalently, an = i) there
is a “service event” at the ith queue; if this queue is not empty a customer departs
from it and, if i < k, joins the (i+ 1)th queue. The number of departures from the
ith queue up to and including time n is given by di(n) and ti(n) = di(n) + ui(n),
where ui(n) is the number of “unused services” at the (i + 1)th queue up to and
including time n. Recalling the queueing-theoretic interpretations of 4 and 5 , we
see that di = x1 4 · · · 4xi and ti = xi 5 di−1.
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Now fix x ∈ Πk, and recall the definition of the triangular array of sequences
d(i) ∈ Λk−i+1, 1 ≤ i ≤ k. Set

d(1) = D(k)(x), t(1) = T (k)(x),

d(2) = D(k−1)(t(1)), t(2) = T (k−1)(t(1)),
and so on; for i ≤ k,

d(i) = D(k−i+1)(t(i−1)),
and for i ≤ k − 1,

t(i) = T (k−i+1)(t(i−1)).
Here we have constructed a “series of queues in series”, the entire system “driven”
by x. This is represented in Figure 1 for the case k = 3.

Figure 1. The series of queues in series (k = 3)

The first series of queues is just the one described above: there are k queues in
the series, and initially queues 2 thru k are empty and the first queue has infinitely
many customers; whenever xi increases by one there is a service at the ith queue
and one customer is permitted to depart (and proceed to the next queue if i < k).
The number of departures from the ith queue up to time n is given by d(1)

i (n).
The second series of queues has t(1) “moving” the customers in place of x. This

time there are k − 1 queues. Initially, queues 2 thru k − 1 are empty and the first
queue has infinitely many customers. There is a service event at the ith queue
whenever t(1)

i increases by one—that is, whenever, in the first series, there is a
departure from the ith queue or an unused service at the (i + 1)th queue (these
events will never occur simultaneously).

The second series generates a new sequence of t’s, which we denote by t(2), and
this is used to drive the third series, which consists of k − 2 queues, and so on.

It is useful to define

(27) q
(j)
i = d

(j)
i − d

(j)
i+1;

q
(j)
i (n) is just the number of customers in the (i+1)th queue of the jth series at time
n. For example, in the network shown in Figure 1, q(1)

1 = 0 and q(1)
2 = q

(2)
1 = 1.

Now consider the evolution of the corresponding semistandard tableaux τ(n),
n ≥ 1. See Figure 2. Another look at the algorithm described above should
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Figure 2. The tableau τ(17)

convince the reader that τ(n) is precisely the semistandard tableau obtained when
one applies the Robinson-Schensted algorithm, with column insertion, to the word
a1 · · ·an.

To see this, look at the tableau τ(17) represented in Figure 2. Recall that am = i
if xi increases by one at time m, in which case there is a service at the ith queue of
the first series.

Suppose that the next “letter” a(18) = 2. Since d(1)
2 < d

(1)
1 , that is, q(1)

1 > 0, we
have a departure from the second queue in the first series; that is, we decrease q(1)

1

by one and increase d(1)
2 by one. In turn, this leads to an increase in t(1)

2 , that is, a
service at the second queue in the second series, and so, since q(2)

1 > 0, we decrease
q

(2)
1 by one, and increase d(2)

2 by one. That’s it; the resulting tableau τ(18) is

1 1 1 1 1 2 2 3 3
2 2 2 2 3 3 3
3 3

and we recognise this procedure as column-insertion of the number 2 into the
tableau τ(17).
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Note that, now, q(2)
1 = 0. Suppose that the next letter a(19) is also a 2. We

still have q(1)
1 > 0; so we decrease q(1)

1 by one and increase d(1)
2 by one. In turn,

this leads to an increase in t(1)
2 , that is, a service at the second queue in the second

series; but q(2)
1 = 0, and so this service is unused and there is no departure (that

is, no increase in d
(2)
2 ). The unused service leads to an increase in t

(3)
1 , that is,

a service at the only queue in the third series, and we increase d(3)
1 by one. The

resulting tableau τ(19) is

1 1 1 1 1 2 2 3 3 3
2 2 2 2 2 3 3
3 3

and, again, we recognise this procedure as column-insertion of the number 2 into
the tableau τ(18), and so on. �

We will give a completely worked example, starting from an empty tableau, in
the next section.

We conclude this section with some remarks on the immediate implications
of Theorem 3.1. Let l(n) and α(n) respectively denote the shape and weight
of τ(n). In view of Theorem 3.1, Lemma 2.4 can now be interpreted as stating
that l1(n) is the length of the longest non-decreasing subsequence in the reversed
word an · · · a1. This is a well-known property of the Robinson-Schensted algorithm.
Thus, Lemma 2.4 can be regarded as a corollary of Theorem 3.1, or the proof of
Lemma 2.4 given in the appendix can be regarded as a new proof of the longest
increasing subsequence property of the Robinson-Schensted algorithm.

More generally, we can compare the statement of Theorem 3.1 with Greene’s
theorem, and this leads to some remarkable identities. Greene’s theorem (see, for
example, [29]) states that, if mi(n) denotes the maximum of the sum of the lengths
of i disjoint, non-decreasing subsequences in the reversed word an · · · a1, then, for
i ≤ k,

(28) mi(n) = l1(n) + l2(n) + · · ·+ li(n).

It therefore follows from Theorem 3.1 that

(29) mi(n) = G
(k)
k (n) +G

(k)
k−1(n) + · · ·+G

(k)
k−i+1(n).

It would be interesting to see a direct proof of this identity. Similarly, one can
compare Theorem 3.1 with the various extensions of Greene’s theorem given, for
example, in [6].

The implications of Lemma 2.2 for the Robinson-Schensted algorithm would
appear to be less well known. Fix k ≥ 2, and set H(z) = F (k)(z∗)∗.

Corollary 3.2. Suppose that (cn) holds. The weight α(n) of τ(n) can be recovered
from the sequence of shapes

{sh τ(l), l ≥ n}.
In fact, if we set, for m ≥ 0,

u(m) = sh τ(n +m)− sh τ(n),

then
α(n) = sh τ(n) +H(u).
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Recall that the recording tableaux σ(n) are nested; the limiting standard tableau
σ(∞) = limn→∞ σ(n) is thus a well-defined object. It follows from Corollary 3.2
that provided (cn) holds we can recover the infinite word a1a2 . . . from σ(∞).

This is also true for the Robinson-Schensted algorithm applied with row inser-
tion. To see this, recall that the recording tableaux maintained when one applies
the row insertion algorithm to the infinite word a1a2 . . . is the same as that main-
tained when one applies the column insertion algorithm to the word a†1a

†
2 . . ., where

a†n = k − an + 1 (or see, for example, [18, A.2, Exercise 5]).

4. A worked example

Suppose k = 3 and n = 7, and we apply the Robinson-Schensted algorithm with
column insertion to the word a1 · · ·a7 = 3112322. We obtain the following sequence
of semistandard tableaux:

3 1 3 1 1 3
1 1 3
2

1 1 3
2
3

1 1 3
2 2
3

1 1 2 3
2 2
3

The evolution of the corresponding queueing network is as follows. For each n, set

Q(n) =

[
q

(1)
1 (n) q

(1)
2 (n)
q

(2)
1 (n)

]
and

D(n) =

 d
(1)
1 (n) d

(1)
2 (n) d

(1)
3 (n)

d
(2)
1 (n) d

(2)
2 (n)
d

(3)
1 (n)

 .
Initially,

Q(0) =
[

0 0
0

]
and D(0) =

 0 0 0
0 0

0

 .
At time 1, a1 = 3; so there is a service at the third queue in the first series. Since

q
(1)
2 (0) = 0, this queue is empty, and the service is unused, leading to an increase

in t
(1)
2 and hence a service at the second queue in the second series. This is also

unused; so we have a service at the first (and only) queue in the third series, and
there is a departure there: d(3)

1 (1) = 1. Thus,

Q(1) =
[

0 0
0

]
and D(1) =

 0 0 0
0 0

1

 .
The corresponding tableau τ(1) is

3

At time 2, a2 = 1; so there is a service at the first queue in the first series and
a customer departs to join the second queue: thus, d(1)

1 (2) = 1 and q
(1)
1 (2) = 1. In

the second series, this leads to an increase in t
(1)
1 and hence a departure from the

first queue to the second queue: thus, d(2)
1 (2) = 1 and q

(2)
1 (2) = 1. In turn, this
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leads to an increase in t(2)
1 and hence a service at the only queue in the third series,

which yields a (second) departure from that queue and we have d(3)
1 (2) = 2. Thus,

Q(2) =
[

1 0
1

]
and D(2) =

 1 0 0
1 0

2

 .
The corresponding tableau τ(2) is

1 3

Similarly, at time 3, a3 = 1, and we get

Q(3) =
[

2 0
2

]
and D(3) =

 2 0 0
2 0

3

 .
The corresponding tableau τ(3) is

1 1 3

At time 4, a4 = 2, and there is a departure from the second queue in the first
series. This provides a service at the second queue in the second series, which is
nonempty; so we have a departure from that queue as well. Thus,

Q(4) =
[

1 1
1

]
and D(4) =

 2 1 0
2 1

3

 .
The corresponding tableau τ(4) is

1 1 3
2

At time 5, there is a service at the third queue in the first series, and a customer
departs. That’s all. Thus,

Q(5) =
[

1 0
1

]
and D(5) =

 2 1 1
2 1

3

 .
The corresponding tableau τ(5) is

1 1 3
2
3

At time 6, there is a service at the second queue in the first series, and a customer
departs; this yields a service at the second queue in the second series and a customer
departs from there also. Thus,

Q(6) =
[

0 1
0

]
and D(6) =

 2 2 1
2 2

3

 .
The corresponding tableau τ(6) is

1 1 3
2 2
3
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At time 7, there is a service at the second queue in the first series, but this queue
is empty and it is not used; this yields a service at the first queue in the second
series, leading to a departure from that queue and consequently a service at (and
departure from) the first (and only) queue in the third series. Thus,

Q(7) =
[

0 1
1

]
and D(7) =

 2 2 1
3 2

4

 .
The final tableau τ(7) is

1 1 2 3
2 2
3

5. Random walk in a Weyl chamber

In this section we record some properties of the conditioned walk of Theorem 1.1,
and extend its definition beyond the case p1 < · · · < pk.

The random walk X is a Markov chain on Zk+ with X(0) = o and transition
matrix

P (x, y) = py−x1{y−x∈b}.

Denote by Px the law of the walk started at x ∈W ∩ Zk+.
We will refer to the random walk with p1 = · · · = pk as the homogeneous walk.
Denote by sl the Schur polynomial associated with the integer partition l1 ≥

l2 ≥ · · · lk ≥ 0.

Lemma 5.1. For any r ∈ Pk, the function hr : Zk+ → R, defined by

hr(x) = p−xsx∗(r)1x∈W ,

is harmonic for P . Note that hr is strictly positive on W ∩ Zk+.

Proof. This follows immediately from the identity∑
i

sl+ei(r) = sl(r),

which in turn can be seen as a special case of the Weyl character formula, or can
be verified directly using the formula

sl(p) = det
(
p
lj+k−j
i

)
/ det

(
pk−ji

)
.

�

Lemma 5.2. Suppose 0 < p1 < · · · < pk. Then, for any x ∈ W ∩ Zk+,

Px(X(n) ∈W, for all n ≥ 0) = Cp−xsx∗(p),

where C is a constant independent of x. In particular, the transition matrix asso-
ciated with the conditioned walk of Theorem 1.1 is given by

(30) P̂ (x, y) =
p−ysy∗(p)
p−xsx∗(p)

P (x, y) =
sy∗(p)
sx∗(p)

1{y−x∈b}.
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Proof. When r = p, the Doob transform of the random walk X via the harmonic
function hr has transition matrix P̂ . Note that this can also be regarded as the Doob
transform of the homogeneous walk via the function x 7→ sx∗(kp). It follows from
the asymptotic analysis of the Green function associated with the (Poissonized)
homogeneous walk presented in [28] that, if κ(x, y) is the Martin kernel associated
with the homogeneous walk, then

κ(x, y)→ constant× sx∗(kp)
whenever y tends to infinity in W in the direction p. Thus, by standard Doob-
Hunt theory (see, for example, [15], [43]), any realisation of the corresponding Doob
transform, starting from the origin o, almost surely goes to infinity in the direction
p. Moreover, any Doob transform on W which almost surely goes to infinity in the
direction p is necessarily the same Doob transform. It therefore suffices to show
that the “properly” conditioned walk of Theorem 1.1, which is the Doob transform
of X via the harmonic function

g(x) = Px(X(n) ∈ W, for all n ≥ 0),

almost surely goes to infinity in the direction p. But this follows immediately from
the estimate, denoting the law of the conditioned walk by P̂ ,

P̂ (|X(n)− pn| > εn) ≤ P (|X(n)− pn| > εn)/g(x) ≤ Ke−c(ε)n/g(x),

where c(ε) > 0, and a standard Borel-Cantelli argument. �

Note that the transition matrix P̂ is well-defined by (30) for any p ∈ Pk and, by
the symmetry of the Schur polynomials, is symmetric in the pi.

The proof of Lemma 5.2 given above is presented in more detail in [34], where
an explicit formula for the constant C is also given.

6. The Robinson-Schensted algorithm with random words

Having made the connection between the path-transformation G(k) and the
Robinson-Schensted algorithm, we will now give a direct proof of Theorem 1.1,
purely in the latter context. In fact, we will present a more general result, which
does not require the condition p1 < · · · < pk.

Let ξ1, ξ2, . . . be a sequence of independent random variables with common distri-
bution p ∈ Pk. Let (S(n), T (n)) be the pair of semistandard and standard tableaux
associated, by the Robinson-Schensted correspondence (with column-insertion),
with the random word ξ1ξ2 · · · ξn. Here, T (n) is the recording tableau. Denote
the shape of S(n) by λ(n); the weight (or type) of S(n) is X(n), where

Xi(n) = |{1 ≤ m ≤ n : ξm = i}|.
Note that X is the random walk discussed throughout this paper, with transition
matrix

P (x, y) = py−x1{y−x∈b}.

The joint law of (S(n), T (n)) is given, for shσ = sh τ ` n, by

(31) P (S(n) = σ, T (n) = τ) = pσ,

and, for x ∈ C = {x ∈ Zk+ : x1 ≥ · · · ≥ xk},
P (λ(n) = x) = sx(p)fx.
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Here pσ is shorthand for pa, where a is the weight of the tableau σ, and fx is the
number of standard tableaux with shape x. The formula (31) follows immediately
from the fact that the Robinson-Schensted correspondence with column-insertion,
as in the case with row-insertion, is bijective.

Consider the Doob transform of P on C, defined by its transition matrix

(32) Q(x, y) =
p−ysy(p)
p−xsx(p)

P (x, y) =
sy(p)
sx(p)

1{y−x∈b}.

Theorem 6.1. λ is a Markov chain on C with transition matrix Q.

Proof. For x, y ∈ C, we will write x↗ y if y−x ∈ b. Recall that a standard tableau
τ with entries {1, 2, . . . , n} can be identified with a sequence of integer partitions

l(1)↗ l(2)↗ · · · ↗ l(n),

where l(m) is the shape of the subtableau of τ consisting only of the entries
{1, 2, . . . ,m}. Since T (n) is a recording tableau, it is identified in this way with the
sequence

λ(1)↗ λ(2)↗ · · · ↗ λ(n).
Thus, summing (31) over semistandard tableaux σ with a given shape l(n) ` n, we
obtain

(33) P (λ(1) = l(1), . . . , λ(n) = l(n)) =
∑

sh σ=l(n)

pσ = sl(n)(p),

and so, for x↗ y ` n+ 1,

P (λ(n+ 1) = y | λ(1) = l(1), . . . , λ(n− 1) = l(n− 1), λ(n) = x)

=
P (λ(1) = l(1), . . . , λ(n− 1) = l(n− 1), λ(n) = x, λ(n+ 1) = y)

P (λ(1) = l(1), . . . , λ(n− 1) = l(n− 1), λ(n) = x)

=
sy(p)
sx(p)

,

as required. �
Recalling the connection between G(k) and the Robinson-Schensted algorithm

described in the previous section, and comparing Q with the transition matrix P̂
defined by (30), we deduce the following generalisation of Theorem 1.1.

Corollary 6.2. X̂ = G(k)(X) is a Markov chain on W ∩Zk+ with transition matrix
P̂ .

We will now record two lemmas which will yield an explicit description of the
joint law of X and X̂, and an intertwining relationship between their respective
transition matrices.

Denote by κxy the number of tableaux of shape x and weight y. (These are the
Kostka numbers.)

Lemma 6.3.

(34) P (X(n) = y | λ(m), m ≤ n) = K(λ(n), y),

where

(35) K(x, y) =
py

sx(p)
κxy.
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Proof. First note that the σ-algebra generated by {λ(m), m ≤ n} is precisely the
same as the σ-algebra generated by T (n). Thus, the conditional law of X(n), given
{λ(m), m ≤ n}, is the same as the conditional law of X(n), given T (n). But this
only depends on the shape, λ(n), of T (n), and is given by

K(x, y) := P (X(n) = y| λ(n) = x) =
py

sx(p)
κxy,

as required. �

We will now show that P and Q are intertwined via the Markov kernel K; that
is,

Lemma 6.4. QK = KP .

Proof. We have

(QK)(x, z) =
∑
y∈C

Q(x, y)K(y, z)

=
∑
y∈C

P (x, y)
p−ysy(p)
p−xsx(p)

pz

sy(p)
κyz

=
∑
i

pip
xp−x−ei

pz

sx(p)
κx+ei,z

=
pz

sx(p)

∑
i

κx+ei,z.

On the other hand,

(KP )(x, z) =
∑
y

K(x, y)P (y, z)

=
∑
i

K(x, z − ei)pi

=
∑
i

pi
pz−ei

sx(p)
κx,z−ei

=
pz

sx(p)

∑
i

κx,z−ei .

The statement of the lemma now follows from the identity∑
i

κx+ei,z =
∑
i

κx,z−ei ;

to see that this holds, observe that, for any q ∈ Rk+,∑
z

qz
∑
i

κx+ei,z = |q|sx(q) =
∑
z

qz
∑
i

κx,z−ei .

�

Corollary 6.5. If we set J(x, y) = K(x∗, y), then

(36) P (X(n) = y | X̂(m), m ≤ n, X̂(n) = x) = J(x, y)

and P̂ J = JP .
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For a discussion on the role of intertwining in the context of Pitman’s 2M −X
theorem (the case k = 2), see [38].

It is instructive to note that Theorem 6.1 also follows from Lemmas 6.3 and 6.4,
provided we can show that there is a class of functions of the form Kϕ, ϕ : Zk+ → R,
which separate probability distributions on C. Indeed, by Lemmas 6.3 and 6.4,

E [(Kϕ)(λ(n + 1))| λ(m),m ≤ n]
= E [E [ϕ(X(n+ 1))|λ(n+ 1)] |λ(m),m ≤ n]
= E [E [ϕ(X(n+ 1))|λ(m),m ≤ n+ 1] |λ(m),m ≤ n]
= E [ϕ(X(n+ 1))|λ(m),m ≤ n]

=
∑
y

K(λ(n), y)E [ϕ(X(n+ 1))|X(n) = y]

=
∑
y

K(λ(n), y)
∑
z

P (y, z)ϕ(z)

= [(KP )ϕ](λ(n))
= [(QK)ϕ](λ(n))
= [Q(Kϕ)](λ(n)),

which would imply that λ is a Markov chain with transition matrixQ if the functions
Kϕ were determining. To find such a class of functions, we recall that the matrix

{κxy, (x, y) ∈ C2}
is invertible (see, for example, [31]). Thus, if we set, for q ∈ Rk+,

(37) ϕq(y) = p−y
∑
z∈C

κ(−1)
yz qzsz(p)1{y∈C},

we have (Kϕq)(x) = qx, and these functions are clearly determining.
By exactly the same arguments as those given in the proof of Theorem 6.1, if

µ(n) denotes the shape of the tableau obtained by applying the Robinson-Schensted
algorithm with row insertion to the random word ξ1 · · · ξn, we obtain

Theorem 6.6. µ is a Markov chain on C with transition matrix Q.

7. Poissonized version

We will now define a continuous version of G(k), and state Poissonized versions
of Corollaries 6.2 and 6.5. This is an interesting setting in its own right, since
the conditioned walk in this case is closely related to the Charlier ensemble and
process (see, for example, [27], [28]), but more importantly it provides a convenient
framework in which to apply Donsker’s theorem and obtain the Brownian analogue
of Corollary 6.2, as was presented in [36] in the case p = (1/k, . . . , 1/k). Moreover,
given the connection we have now made with the Robinson-Schensted algorithm,
this continuous path-transformation can also be regarded as a continuous analogue
of the Robinson-Schensted algorithm (see section 10 for further remarks in this
direction).

Let D0(R+) denote the space of cadlag paths f : R+ → R with f(0) = 0. We
will extend the definition of the operations 4 and 5 to a continuous context. For
f, g ∈ D0(R+), define f 4 g ∈ D0(R+) and f 5 g ∈ D0(R+) by

(38) (f 4 g)(t) = inf
0≤s≤t

[f(s) + g(t)− g(s)]
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and

(39) (f 5 g)(t) = sup
0≤s≤t

[f(s) + g(t)− g(s)].

As in the discrete case, these operations are not associative: unless otherwise de-
lineated by parentheses, the default order of operations is from left to right; for
example, when we write f 4 g4h, we mean (f 4 g)4h.

Define a sequence of mappings Γ(k) : D0(R+)k → D0(R+)k by

(40) Γ(2)(f, g) = (f 4 g, g5 f),

and, for k > 2,

Γ(k)(f1, . . . , fk) = (f1 4 f24 · · · 4 fk,
Γ(k−1)(f2 5 f1, f3 5 (f1 4 f2), . . . , fk 5 (f1 4 · · · 4 fk−1))).(41)

Let N = (N1, . . . , Nk) be a continuous-time random walk with generator Gf(x)
=
∑

i µi[f(x+ei)−f(x)]. Denote by Rx the law ofN started from x, and by (Rt) the
corresponding semigroup. For convenience, we will also denote the corresponding
transition kernel by Rt(x, y). Set pi = µi/|µ|, and denote by Sx the law of the
hp-transform on W , started at x, and by St the corresponding semigroup.

Note that the embedded discrete-time random walk in N has the same law as
X . That is, if τn = inf{t ≥ 0 : |N(t)| = n} and Y (n) = N(τn), then Y is a random
walk on Zk+ with transition matrix P .

Theorem 7.1. The law of M = Γ(k)(N) under Ro is the same as the law of N
under So.

Moreover, if J is the Markov kernel defined in the previous section, then

Theorem 7.2.

(42) Ro(N(t) = y | M(s), s ≤ t) = J(M(t), y),

and for t ≥ 0 we have StJ = JRt.

8. Brownian motion in a Weyl chamber and random matrices

Let X be a standard Brownian motion in Rd, and let Px denote the law of X
started at x. Denote the corresponding semigroup and transition kernel by (Pt),
and the natural filtration of X by (Ft).

Recall that
W = {x ∈ Rd : x1 ≤ · · · ≤ xd}

and denote by P̃t the semigroup of the process killed at the first exit time

T = inf{t ≥ 0 : X(t) /∈ W}.
Define Qx, for x ∈ W ◦, by

Qx|Ft =
h(X(t ∧ T ))

h(x)
· Px|Ft ,

where h is the Vandermonde function h(x) =
∏
i<j(xj − xi). Denote the corre-

sponding semigroup by Qt.
The measure

Qo = lim
W◦3x→0

Qx
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is well-defined, and can be interpreted as the law of the eigenvalue-process associ-
ated with Hermitian Brownian motion [17], [20]. The law of X(1) under Qo is the
familiar Gaussian Unitary Ensemble (GUE) of random matrix theory.

In [36] it was shown, by applying Donsker’s theorem in the context of Theo-
rem 7.1 with µ = (1, . . . , 1), that

Theorem 8.1. The law of Γ(d)(X) under Po is the same as the law of X under
Qo.

In particular,1 (Xd5 · · · 5X1)(1) has the same law as the largest eigenvalue of
a d×d GUE random matrix; this had been observed earlier by Baryshnikov [5] and
by Gravner, Tracy and Widom [21]. A similar representation was obtained in [11].

Here we record some additional properties of the process R = Γ(d)(X), and
its relationship with X , which are inherited, in the same application of Donsker’s
theorem, from Theorem 7.2.

Theorem 8.2.

(43) Po(X(t) ∈ dx | R(s), s ≤ t;R(t) = r) = L(r, dx),

where L is characterised by

(44)
∫
Rk
eλ·yL(x, dy) =

det(eλixj )
h(λ)h(x)

=: cλ(x).

Also, for t ≥ 0 we have QtL = LPt.

The intertwining QtL = LPt can also be seen as a direct consequence of the
Harish-Chandra/Itzykson-Zuber formula [22], [25] for the Laplace transform of the
conditional law of the diagonal of a GUE random matrix given its eigenvalues, using
the fact that the diagonal of a Hermitian Brownian motion evolves according to the
semigroup Pt and the eigenvalues evolve according to the semigroup Qt. It is also
easily verified, using the Karlin-MacGregor formula, that

P̃t(x, y) =
∑
σ∈Sd

sgn(σ)Pt(x, σy).

We will now present analogous results for Brownian motion with drift. Fix
µ ∈ Rd, and denote by P(µ)

x the law of Brownian motion in Rd with drift µ. Denote
by (P (µ)

t ) the corresponding semigroup and by (P̃ (µ)
t ) the semigroup of the process

killed at the first exit time T of the Weyl chamber W . Define hµ by

(45) hµ(x) = e−µ·x |det (eµixj )| .

It is easy to check directly that hµ is a positive harmonic function for P̃ (µ)
t . Define

Q(µ)
x

∣∣∣
Ft

=
hµ(X(t ∧ T ))

hµ(x)
· P(µ)

x

∣∣∣
Ft
.

Denote the corresponding semigroup by Q
(µ)
t . Recalling the absolute continuity

relationship

(46) P̃
(µ)
t (x, y) = eµ·(y−x)−‖µ‖22t/2P̃t(x, y),

1See Remark 2(ii) in section 10 below.
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we can write

(47) Q
(µ)
t (x, y) =

hµ(y)
hµ(x)

P̃
(µ)
t (x, y) =

det (eµiyj )
det (eµixj )

e−‖µ‖
2
2t/2P̃t(x, y),

and we note that this is symmetric in the µi.
It is easy to verify that the measure

Q(µ)
o = lim

W◦3x→0
Q(µ)
x

is well-defined.
Applying Donsker’s theorem in the context of Theorem 7.1, as in [36], we obtain

Theorem 8.3. The law of Γ(d)(X) under P(µ)
o is the same as the law of X under

Q(µ)
o .

As in the discrete case, we remark that the law Q(µ)
o is symmetric in the drifts

µi.
We also have, by the same application of Donsker’s theorem, the following ana-

logue of Theorem 7.2.

Theorem 8.4.

(48) P(µ)
o (X(t) ∈ dx | R(s), s ≤ t;R(t) = r) = L(µ)(r, dx),

where

(49) L(µ)(x, dy) = cµ(x)−1eµ·yL(x, dy).

Also, for t ≥ 0,

(50) Q
(µ)
t L(µ) = L(µ)P

(µ)
t .

The intertwining relationship (50) can also be verified directly using QtL = LPt
and (46).

For related work on reflecting Brownian motions and non-colliding diffusions
see [7], [11], [12], [13], [16], [23], [35], [39] and references therein.

9. An application in queueing theory

In this section, using the connection with the Robinson-Schensted correspon-
dence obtained in section 3, we will write down a formula for the “transient distri-
bution” of a series of M/M/1 queues in tandem. There are many papers on this
topic for the case of a single queue, where the solution is given in terms of modified
Bessel functions; see [2] and references therein. In [3], the case of two queues was
considered and a solution obtained, but the techniques used there do not seem to
extend easily to higher dimensions.

Consider a series of M/M/1 queues in tandem, k in number, driven by Poisson
processes N1, . . . , Nk with respective intensities µ1, . . . , µk. The first queue has
infinitely many customers, and the remaining queues are initially empty. At every
point of Ni, there is a service at the ith queue and, provided that queue is not
empty, a customer departs and joins the (i + 1)th queue (or leaves the system if
i = k).

Denote by D(t) = (D1(t), . . . , Dk(t)) the respective numbers of customers to
depart from each queue up to time t. Note that, since there are always infinitely
many customers in the first queue, D1 is a Poisson process; we can thus ignore the
first queue, think of the second queue as the first in a series of k − 1 queues, and
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think of D1 as the arrival process at the first of these k − 1 queues in the series.
This is a more conventional setup in queueing theory. The state of the system is
described by the queue lengths

(51) Q1 = D1 −D2, . . . , Qk−1 = Dk−1 −Dk.

We will write down a formula for the law of D(t) which, in turn, yields the law of
Q(t) = (Q1(t), . . . , Qk−1(t)).

Without loss of generality, we can assume that |µ| = 1. The de-Poissonized
version of this problem is to consider the usual random walk X , with p = µ, and
consider the law of δ(n) = (D(k)(X))(n). But we know this law, from sections 3
and 6. It is the law of β(S(n)), where S(n) of the random semistandard tableau
obtained when one applies the Robinson-Schensted algorithm with column-insertion
to the random word ξ1 · · · ξk and βi(τ) denotes the number of i’s in the ith row of
a tableau τ .

Thus,

(52) P (D(t) = d) = e−t
∑
n≥0

tn

n!
P (δ(n) = d),

where

(53) P (δ(n) = d) =
∑

l≥d,l`n

∑
sh τ=l

pτfl1{β(τ)=d}.

This formula is complicated in general, but simplifies in certain cases.
Consider the case k = 2. In this case, we have only one summand:

(54) P (δ(n) = d) = pd1
1 p

n−d1
2 f(n−d2,d2).

By the hook-length formula (see, for example, [18]), for n ≥ d1 + d2,

f(n−d2,d2) = n!
n− 2d2 + 1

(n− d2 + 1)!d2!
.

Thus, recalling that p = µ,

(55) P (D(t) = d) = e−t
∑

n≥d1+d2

tnµd1
1 µ

n−d1
2

n− 2d2 + 1
(n− d2 + 1)!d2!

.

It follows that

(56) P (Q(t) = q) = (µ1/µ2)qe−t
∑
m≥q

(m+ 1)(µ2t)mIm+1(2
√
µ1µ2t).

Let sl/d denote the Schur polynomial associated with the skew-tableau l/d (see,
for example, [18]). We will use the following formula:

(57)
∑
l

sl/d(x)
t|l|fl
|l|! = e|x|t

t|d|fd
|d|! .

This follows from the identity

(58)
∑
l

sl/d(x)sl(y) = sd(y)
∏
i,j

(1− xiyj)−1
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(this is a variant of Cauchy’s identity; see, for example, [31, pp. 62–70]) and the
fact that

(59) lim
n→∞

sl

(
t

n
.1n
)

=
t|l|fl
|l|! .

In the case k = 3, if p2 = p3, we have

P (D1(t) = d1, D2 ≥ d2, D3(t) = d3) = e−tpd
∑
l

sl/d(p2, p3)
t|l|fl
|l|!

= e−p1tpd
t|d|fd
|d|! .(60)

It would be interesting to compare (60) with the explicit formulas obtained in [3]
for this case.

In the general case, we can simplify the formula (52) if d is constant. Suppose
di = m for all i. Then, using (57) and the hook-length formula,

P (D(t) = d) = e−tpd
∑
l

sl/d(p2, p3, . . . , pk)
t|l|fl
|l|!(61)

= e−p1tpd
t|d|fd
|d|!(62)

= e−p1t(tkp1p2 · · · pk)m
∏
i≤k

Γ(i +m)
Γ(i)

.(63)

It follows that

(64) P (Q1(t) = Q2(t) = · · · = Qk−1(t) = 0) = e−p1tH(tkp1p2 · · · pk),

where

(65) H(s) =
∑
m≥0

sm
∏
i≤k

Γ(i)
Γ(i +m)

.

Finally we remark that, by Theorem 6.1 and the symmetry of the Schur poly-
nomials, the law of the process Dk is symmetric in the parameters p1, . . . , pk.

10. Concluding remarks

1. The Krawchouk process: A binomial version of Theorem 1.1 was presented in
[28]. This states that, if X is a random walk in Zk+ with transition matrix

P (x, y) = Cpy−x1y−x∈{0,1}k

(C is a normalising constant), then, assuming p1 < · · · < pk and extending slightly
the domain of G(k), we see that G(k)(X) has the same law as that of X conditioned
to stay forever in W . In this case, a similar connection can be made with the
dual Robinson-Schensted-Knuth (RSK) correspondence for zero-one matrices, and
analogues of all the main results of section 6 can be obtained similarly. The Schur
polynomials again play an important role. See [34] for details.

2. Properties of Γ(k): The following continuous analogues of Lemmas 2.1–2.4
can be readily verified. Denote by C0(R+,Rk) the set of continuous functions
f : R+ → Rk with f(0) = o. For f ∈ C0(R+,Rk), where k ≥ 2,

(i) |Γ(k)(f)| = |f |,
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(ii) Γ(k)
k (f) = fk 5 · · · 5 f1,

(iii) f(t) = [Γ(k)(f)](t) + Φ(k)([Γ(k)(f)](t, u), u ≥ t), where Φ(k) is defined on a
suitable domain as the continuous analogue of F (k).

In this continuous setting, the identity (ii) can be verified directly using the “sup-
integration by parts” formula

sup
0<s<t

{
sup

0<r<s
u(r) + v(s)

}∨
sup

0<s<t

{
u(s) + sup

0<r<s
v(r)

}
= sup

0<s<t
u(s) + sup

0<s<t
v(s),

for u, v ∈ C0(R+,Rk). This is a “max-plus” analogue of the usual integration by
parts formula and is easily verified by the method of Laplace.

3. A continuous Robinson-Schensted algorithm: Given the connection we have
made between the path-transformations G(k) and the Robinson-Schensted algo-
rithm, the mappings Γ(k) can be used to define a continuous version of the Robinson-
Schensted algorithm. More precisely, let CGC denote the Gelfand-Cetlin cone,
which consists of triangular arrays of real numbers

(66) (x(i)
j , 1 ≤ i ≤ k, 1 ≤ j ≤ i)

satisfying x(i)
j ≥ x

(i−1)
j ≥ x

(i)
j+1, for all i, j. Points in the Gelfand-Cetlin cone can

be regarded as continuous analogues of semistandard tableaux. The continuous
analogue of a word is a continuous function f : [0, 1] → Rk with f(0) = o: denote
the set of these functions by C0([0, 1],Rk). Define a map φ : C0([0, 1],Rk)→ CGC
as follows. For convenience, let Γ(1) be the identity transformation. If we set
x = φ(f1, . . . , fk), then, for each 1 ≤ i ≤ k,

(67) x(i) = ([Γ(i)
i (f1, . . . , fi)](1), . . . , [Γ(i)

1 (f1, . . . , fi)](1)).

The continuous analogue of the corresponding “recording tableau” is the path

(68) ρ(f) = {[Γ(k)(f)](t), 0 ≤ t ≤ 1} ∈ C0([0, 1],W ).

By analogy with the discrete Robinson-Schensted algorithm, the function f can be
uniquely recovered from the pair φ(f) and ρ(f). A more detailed discussion on
the properties of this continuous Robinson-Schensted algorithm will be presented
elsewhere.

4. GUE minors: Let A be a k × k GUE random matrix, and denote the eigen-
values of the ith minor (Alm, l,m ≤ i) by λ(i)

1 ≥ · · · ≥ λ
(i)
i , for i ≤ k. In the above

context, Baryshnikov [5] showed that, if (B(t), 0 ≤ t ≤ 1) is a standard Brownian
motion in Rk, then the random vector

(φ(1)
1 (B), . . . , φ(k)

1 (B))

has the same law as
(λ(1)

1 , . . . , λ
(k)
1 ).

In [5], Donsker’s theorem is applied in the context of a random semistandard tableau
with the same law as T (n) of section 6 in the homogeneous case p1 = · · · = pk. We
can thus extend Baryshnikov’s arguments using the representation for the Robinson-
Schensted algorithm given in this paper and the continuity of the mappings Γ(i),
i ≤ k, to see that, in fact, φ(B) has the same law as

(λ(1), . . . , λ(k)).
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However, it is easy to see,2 by considering the case k = 2, that these identities do
not extend to the process level (that is, with φ defined simultaneously on intervals
[0, t] instead of just [0, 1] and “GUE” replaced by “Hermitian Brownian motion”).

5. Related topics: The intertwining of Lemma 6.4 is closely related to the work of
Biane on quantum random walks [8], [9], [10]. The Robinson-Schensted correspon-
dence is of fundamental importance to the representation theory of Sn and GL(n).
Related topics in representation theory (which are certainly connected to results
presented in this paper) include Littelmann’s path model for the finite-dimensional
representations of GL(n) (see, for example, [30]), crystal bases, and representations
of quantum groups (see, for example, [14], [29]).

Appendix

Proof of Lemma 2.1. The first identity is trivial:

(y5x)(n) = max
0≤m≤n

[y(m) + x(n)− x(m)]

= x(n) + y(n) + max
0≤m≤n

[y(m)− y(n)− x(m)]

= x(n) + y(n)− (x4 y)(n).

If we set z = y − x, and s(n) = max0≤m≤n z(n), then the second identity is
equivalent to the well-known fact that

s(n) = min
l≤n

[2s(l)− z(l)].

�

Proof of Lemma 2.2. Fix x ∈ Λk, and write G(k) = G(k)(x) unless otherwise indi-
cated (similarly for D(k) and T (k)). We will first show that |G(k)| = |x|. We will
prove this by induction on k. The case k = 2 is given by Lemma 2.1. Assume the
induction hypothesis for k − 1. We recall from the definitions that

(69) G(k) =
(
D

(k)
k , G(k−1)

(
T (k)

))
.

By the induction hypothesis,

(70) |G(k)| = D
(k)
k + |T (k)|.

Recall that, for i ≥ 2,

(71) D
(k)
i = D

(k)
i−1 4xi

and

(72) T
(k)
i−1 = xi 5D

(k)
i−1.

Thus, by Lemma 2.1,

(73) xi = D
(k)
i −D

(k)
i−1 + T

(k)
i−1

for each i ≥ 2; summing this over i and recalling that D(k)
1 = x1 yields

(74) |x| = D
(k)
k + |T (k)|;

so we are done.

2Bougerol and Jeulin, private communication
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We will now show that

(75) x(n) = G(k)(n) + F (k)
(
G(k)(l)−G(k)(n), l ≥ n

)
,

for some function F (k) to be defined. Again we will prove this by induction on k,
and note that for k = 2, this is given by Lemma 2.1.

A recursive definition of F (k) will be implicit in the induction argument. Recall
that

(76) G(k) =
(
D

(k)
k , G(k−1)

(
T (k)

))
.

Assuming the induction hypothesis for k − 1, we have, for i ≥ 2,

(77) T
(k)
i−1(n) = G

(k)
i (n) + F (k−1)

(
(G(k)

2 , . . . , G
(k)
k )(n, l)

)
.

Thus, for i ≥ 2, using (73) and the fact that

D
(k)
i (n)−D(k)

i−1(n) = max
l≥n

[D(k)
i (n, l)− T (k)

i−1(n, l)],

we have

(78) xi(n) = G
(k)
i (n) + J

(k)
i

(
(D(k)

i , G
(k)
2 , . . . , G

(k)
k )(n, l)

)
,

where J (k)
i is defined on a suitable domain. It is important to note here that J (k)

i

does not depend on n.
In this way, recalling that D(k)

k = G
(k)
1 , we obtain

(79) xk(n) = G
(k)
k (n) + F

(k)
k

(
G(k)(l)−G(k)(n), l ≥ n

)
,

where the function F (k)
k is implicitly defined by this identity (on a suitable domain)

and does not depend on n. Observe that we can also recover the sequence of future
increments xk(l)−xk(n) as a function, which does not depend on n, of the sequence
{G(k)(l)−G(k)(n), l ≥ n}.

We can now recover the values xk−1(n), xk−2(n), and so on, as follows. By
equations (73) with i = k,

(80) D
(k)
k−1(n) = G

(k)
1 (n)− xk(n) + T

(k)
k−1(n).

It follows that the sequence {D(k)
k−1(n, l), l ≥ n} is a function, which does not

depend on n, of the sequence {G(k)(l)−G(k)(n), l ≥ n}. Combining this with (78),
we see that

(81) xk−1(n) = G
(k)
k−1(n) + F

(k)
k−1

(
G(k)(l)−G(k)(n), l ≥ n

)
,

where F (k)
k−1 is implicitly defined by this identity (on a suitable domain) and does

not depend on n. Similarly, we can recover the sequence of future increments
xk(l)−xk(n) as a function, which does not depend on n, of the sequence {G(k)(l)−
G(k)(n), l ≥ n}, and so on. Finally, x1(n) is obtained using |x| = |G(k)|. �

Proof of Lemma 2.3. We want to show that, for (a, b, c) ∈ Λ3,

(82) a5 (c4 b)5 (b5 c) = a5 b5 c,

and for (w, x, y) ∈ Λ3,

(83) w4 (y5x)4 (x4 y) = w4x4 y.
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First note that these identities are equivalent. To see this, set a(n) = n−w(n),
b(n) = n−x(n) and c(n) = n− y(n). Then plug these into (82) to obtain (83). We
will therefore restrict our attention to the identity (83).

Let d = x4 y, t = y5x, q = x− d and u = y − d. Then (83) becomes

(84) w4 (x+ u)4 (y − u) = w4x4 y.

That is, the output of a series of queues in tandem driven by (w, x + u, y − u) is
the same as that of the series driven by (w, x, y). Set

d1 = w4x,

d2 = w4x4 y,

d̃1 = w4 (x+ u),

d̃2 = w4 (x+ u)4 (y − u),

and

q1 = w − d1,

q2 = d1 − d2,

q̃1 = w − d̃1,

q̃2 = d̃1 − d̃2.

We want to show that d2 = d̃2. From the above definitions, this is equivalent to
showing that

q1(n) + q2(n) = q̃1(n) + q̃2(n)

for all n ≥ 0. We will prove this by induction on n.
The induction hypothesis H is:
q1 + q2 = q̃1 + q̃2, and either
(i) q̃2 − q2 ≥ 0 and q − q2 = 0, or
(ii) q̃2 − q2 = 0 and q − q2 ≥ 0.
When n = 0 we have q = q1 = q2 = q̃1 = q̃2 = 0, and the induction hypothesis is

trivially satisfied. Assume the induction hypothesis holds at time n− 1. Note that
(w, x, y − u, u) ∈ Λ4; that is, only one of these quantities, if any, can increase by
one at time n. We will consider the following five cases, which are exhaustive and
mutually exclusive, separately.

(a) (w, x, y − u, u)(n) = (w, x, y − u, u)(n− 1),
(b) w(n) − w(n− 1) = 1,
(c) x(n) − x(n− 1) = 1,
(d) (y − u)(n)− (y − u)(n− 1) = 1,
(e) u(n)− u(n− 1) = 1.

Case (a): (w, x, y − u, u)(n) = (w, x, y − u, u)(n − 1). In this case, nothing
changes, and so H is preserved.

Case (b): w(n) − w(n − 1) = 1. In this case, q1(n) = q1(n − 1) + 1 and
q̃1(n) = q̃1(n− 1) + 1, the other quantities remain unchanged, and H is preserved.

Case (c): x(n)− x(n− 1) = 1. Then q(n) = q(n− 1) + 1.
Suppose q1(n − 1) > q̃1(n − 1) > 0. Then q1(n) = q1(n − 1) − 1 and q2(n) =

q2(n− 1) + 1. Thus, q − q2 and q1 + q2 do not change. Also, q̃1(n) = q̃1(n− 1)− 1
and q̃2(n) = q̃2(n − 1) + 1. Thus, q̃2 − q2 and q̃1 + q̃2 do not change either; so we
still have q1 + q2 = q̃1 + q̃2, and H is preserved.
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Now suppose q1(n − 1) > q̃1(n − 1) = 0. Note that this implies q̃2(n − 1) −
q2(n−1) > 0, so that we are initially in case (i) of the induction hypothesis. In this
case, q1(n) = q1(n− 1)− 1 and q2(n) = q2(n− 1) + 1, but q̃1 and q̃2 do not change.
Thus, q − q2, q1 + q2 and q̃1 + q̃2 do not change. The quantity q̃2 − q2 decreases by
one, but remains nonnegative; so we remain in case (i), and H is preserved.

Finally, if q1(n−1) = q̃1(n−1) = 0, then we are initially in case (ii) of H . There
is no change to q1, q2, q̃1 or q̃2, but q inceases by one, and so we remain in case (ii),
and H is preserved.

Case (d): (y − u)(n) − (y − u)(n − 1) = 1. In this case, q(n − 1) > 0 and q
decreases by one. The values of q1 and q̃1 do not change.

If we are in case (i) at time n− 1, then q̃2(n− 1) ≥ q2(n− 1) > 0, and so both
q2 and q̃2 also decrease by one; thus, we remain in case (i), and H is preserved.

If we are in case (ii) at time n− 1, then q̃2(n− 1) = q2(n− 1), and either q2 and
q̃2 both decrease by one or both remain unchanged. Either way, we remain in case
(ii), and H is preserved.

Case (e): u(n) − u(n − 1) = 1. Then q(n − 1) = q2(n − 1) = 0, and we are
initially in case (i) of H . The values of q, q1 and q2 will not change. If q̃1 > 0, then
q̃1 decreases by one and q̃2 increases by one; otherwise, q̃1 and q̃2 do not change.
Either way, we remain in case (i), and H is preserved. �

Proof of Lemma 2.4. We will prove this by induction on k. It is certainly true for
k = 2, from the definition of G(2). Recall the definition of G(k),

(85) G(k) =
(
D

(k)
k , G(k−1)

(
T (k)

))
.

By the induction hypothesis, that the lemma is true for G(k−1), we have

(86) G
(k)
k = T

(k)
k−1 5T

(k)
k−2 5 · · · 5T

(k)
1 .

We will now repeatedly apply Lemma 2.3:

T
(k)
k−1 5T

(k)
k−2 = xk 5D

(k)
k−1 5T

(k)
k−2

= xk 5 (D(k)
k−2 4xk−1)5 (xk−1 5D

(k)
k−2)

= xk 5xk−1 5D
(k)
k−2.

Similarly,

xk 5xk−1 5D
(k)
k−2 5T

(k)
k−3 = xk 5xk−1 5 (D(k)

k−3 4xk−2)5 (xk−2 5D
(k)
k−3)

= xk 5xk−1 5xk−2 5 D
(k)
k−3,

and so on. �
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