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DIRECTED POLYMERS AND THE QUANTUM TODA LATTICE

BY NEIL O’CONNELL

University of Warwick

We characterize the law of the partition function of a Brownian directed
polymer model in terms of a diffusion process associated with the quantum
Toda lattice. The proof is via a multidimensional generalization of a theorem
of Matsumoto and Yor concerning exponential functionals of Brownian mo-
tion. It is based on a mapping which can be regarded as a geometric variant
of the RSK correspondence.

1. Introduction. Let B1(t),B2(t), . . . ,BN(t), t ≥ 0, be a collection of inde-
pendent standard one-dimensional Brownian motions and write Bi(s, t) = Bi(t)−
Bi(s) for s ≤ t . Let β ∈ R, t ≥ 0, and consider the random variable

ZN
t (β) =

∫
0<s1<···<sN−1<t

eβ(B1(s1)+B2(s1,s2)+···+BN(sN−1,t)) ds1 · · · dsN−1.

This is the partition function for a model of a 1 + 1 dimensional directed polymer
in a random environment which has been introduced and studied in the papers [38,
42, 54]. The free energy density is given explicitly by

lim
N→∞

1

N
logZN

N (β) = inf
t>0

[β2t − �(t)] − logβ2

almost surely, where �(z) = �′(z)/�(z). The law of ZN
t (β) is well understood in

the zero temperature limit β → ∞, where it has close connections with random
matrices. Define

MN
t = lim

β→∞
1

β
logZN

t (β)

(1)
= max

0≤s1≤···≤sN−1≤t

(
B1(s1) + B2(s1, s2) + · · · + BN(sN−1, t)

)
.

Note that, by Brownian scaling, the law of MN
t /

√
t is independent of t .

THEOREM 1.1. The random variable MN
1 has the same distribution as the

largest eigenvalue of a N × N GUE random matrix [2, 23]. In fact [7, 43], the
stochastic process (MN

t , t ≥ 0) has the same law as the largest eigenvalue of a
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standard Hermitian Brownian motion, that is, it has the same law as the first coor-
dinate of a Brownian motion conditioned (in the sense of Doob) never to exit the
Weyl chamber CN = {x ∈ R

N :x1 > · · · > xN }, started from the origin. This is a
diffusion process in CN with infinitesimal generator �/2 + ∇ logh · ∇ where

h(x) = ∏
1≤i<j≤N

(xi − xj ).(2)

This connection with random matrices yields very precise information concern-
ing the distribution and asymptotic behavior of MN when N is large. For example,
it follows that

lim
N→∞P(MN

N ≤ 2N + xN1/3) = F2(x),

where F2 is the Tracy–Widom distribution [57].
In this paper we obtain an analogue of Theorem 1.1 for the stochastic process

(logZN
t (β), t > 0). We will show that, for each β > 0, this process has the same

law as the first coordinate of a diffusion process in R
N which is closely related to

the quantum Toda lattice. This yields an analytic description of the law of ZN
t (β)

which should provide a good starting point for further asymptotic analysis.

2. The quantum Toda lattice. The quantum Toda lattice is a quantum inte-
grable system with Hamitonian given by the Schrödinger operator

H =
N∑

i=1

∂2

∂x2
i

− 2
N−1∑
i=1

exi+1−xi .(3)

It is closely related to the Lie algebra glN : the exponents in the potential corre-
spond to the simple roots ei − ei+1, where e1, . . . , eN denote the standard basis
elements in R

N . More generally, the quantum Toda lattice associated with a real
split semisimple (or reductive) Lie algebra g with Cartan subalgebra a has Hamil-
tonian given by

�a − 2
∑
α∈�

dαe−α(x),

where �a is the Laplacian on a, � is a set of simple roots in a∗ and dα are rational
numbers with a particular property [21]. For example, if g = so2N+1, then we can
identify a with R

N , take

� = {e1 − e2, e2 − e3, . . . , eN−1 − eN, eN },
and the corresponding Hamiltonian is given by

N∑
i=1

∂2

∂x2
i

− 2
N−1∑
i=1

exi+1−xi − e−xN .
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The connection between the (generalized) quantum Toda lattice and the represen-
tation theory of the corresponding Lie algebra g was first observed by Kostant
[35], who showed that its eigenfunctions can be represented as particular ma-
trix elements of infinite-dimensional representations of g. In the simplest case
when g = sl2 or gl2, the eigenfunctions are given in terms of classical Whittaker
functions (actually Macdonald functions). For this reason, they are often called g-
Whittaker functions, or G-Whittaker functions, if g = Lie(G). They also arise in
the harmonic analysis of automorphic forms on Lie groups (see, e.g., [8]). There
is a spectral decomposition theorem in the general setting due to Semenov–Tian–
Shansky [53]. In this paper we will only consider the case g = glN . However, many
of the constructions given throughout the paper have Lie-theoretic interpretations
and extend to the more general setting. This will be indicated where appropriate.

The eigenfunctions of H have the following integral representation [19, 22, 26,
28]:

ψλ(x) =
∫
�(x)

eFλ(T )
N−1∏
k=1

k∏
i=1

dTk,i,(4)

where �(x) denotes the set of real triangular arrays (Tk,i,1 ≤ i ≤ k ≤ N) with
TN,i = xi , 1 ≤ i ≤ N , and

Fλ(T ) =
N∑

k=1

λk

(
k∑

i=1

Tk,i −
k−1∑
i=1

Tk−1,i

)
−

N−1∑
k=1

k∑
i=1

(eTk,i−Tk+1,i + eTk+1,i+1−Tk,i ).

This integral is defined for λ ∈ C
N and has a recursive structure which we will

now describe. Write H = H(N), ψλ = ψ
(N)
λ . We will drop these superscripts again

later, whenever they are unnecessary. For convenience we define H(1) = d2/dx2

and ψ
(1)
λ (x) = eλx . Following [19], for N ≥ 2 and θ ∈ C, define a kernel on R

N ×
R

N−1 by

Q
(N)
θ (x, y) = exp

(
θ

(
N∑

i=1

xi −
N−1∑
i=1

yi

)
−

N−1∑
i=1

(eyi−xi + exi+1−yi )

)
.

Denote the corresponding integral operator by Q(N)
θ , defined on a suitable class of

functions by

Q(N)
θ f (x) =

∫
RN−1

Q
(N)
θ (x, y)f (y) dy.

Then

ψ
(N)
λ1,...,λN

= Q(N)
λN

ψ
(N−1)
λ1,...,λN−1

,(5)

and the integral formula (4) can be re-expressed as

ψ
(N)
λ = Q(N)

λN
Q(N−1)

λN−1
· · · Q(2)

λ2
ψ

(1)
λ1

.
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Moreover, as remarked in [19], the following intertwining relation holds:(
H(N) − θ2) ◦ Q(N)

θ = Q(N)
θ ◦ H(N−1).(6)

This follows from the identity(
H(N)

x − θ2)
Q

(N)
θ (x, y) = H(N−1)

y Q
(N)
θ (x, y),

which is readily verified. Combining (5) with the intertwining relation (6) yields
the eigenvalue equation:

H(N)ψ
(N)
λ =

(
N∑

i=1

λ2
i

)
ψ

(N)
λ .

We note the following immediate consequences of the above integral rep-
resentation. If λ ∈ ιRN , then ψλ(x) = ψ−λ(x); if λ ∈ ιRN and ν ∈ R

N , then
|ψλ+ν(x)| ≤ ψν(x). It is also known (combining results from [20, 25, 31]) that
for each x ∈ R

N , ψλ(x) is an entire function of λ ∈ C
N .

The above construction has a representation-theoretic interpretation which is
described in [19]. It is closely related to the Gauss decomposition and has been
extended to the other classical Lie algebras in [21]. Encoded in the integrand are
the defining hyperplanes of the Gelfand–Tsetlin polytope associated with the vec-
tor x.

In the present setting (see, e.g., [31]), the spectral decomposition theorem states
that the integral transform

f̂ (λ) =
∫

RN
f (x)ψλ(x) dx(7)

defines an isometry from L2(R
N,dx) into L2(ιR

N, sN(λ) dλ), where sN(λ) dλ is
the Sklyanin measure defined by

sN(λ) = 1

(2πι)NN !
∏
j �=k

�(λj − λk)
−1.(8)

There is also a Mellin–Barnes type integral formula for ψλ due to Kharchev
and Lebedev [31–33] (see also [26]). This is a kind of dual of the above integral
representation and has a similar recursive structure. For N ≥ 2 and z ∈ R, define a
kernel on C

N × C
N−1 by

Q̂(N)
z (λ, γ ) = ez(

∑
λi−∑

γi)
∏
i,j

�(λi − γj ).

Then

ψ
(N)
λ (x) =

∫
Q̂(N)

x1
(λ, γ )ψ(N−1)

γ (x2, . . . , xN)sN−1(γ ) dγ,(9)
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where the integral is along vertical lines with γi < λj for all i, j . This con-
struction also has a representation-theoretic interpretation which is described in
[18]. Gerasimov et al. [20] give a clear account of the nature of the duality be-
tween the two constructions and, in particular, show how this duality yields the
following identity: for λ, ν ∈ C

N ,∫
RN

e−ex1−z

ψλ(x)ψν(x) dx = ez
∑

(λi+νi)
∏
i,j

�(λi + νj ).(10)

This is closely related to a Whittaker integral identity which was conjectured by
Bump [9] and later proved by Stade [56], Theorem 1.1; there is an extensive liter-
ature on similar and related identities; see, for example, [10, 27, 55].

When N = 2, the eigenfunctions ψλ are given by

ψλ(x) = 2 exp
(1

2(λ1 + λ2)(x1 + x2)
)
Kλ1−λ2

(
2e(x2−x1)/2)

,

where Kν(z) is the Macdonald function. In this case, the Givental’s formula is
equivalent to the integral formula

Kν(z) = 1

2

∫ ∞
0

tν−1 exp
(
−z

2
(t + 1/t)

)
dt,

the contour integral representation (9) is equivalent to

Kν(z) = 1

4πι

∫ a+ι∞
a−ι∞

�(s)�(s − ν)

(
z

2

)ν−2s

ds, a > max{ν,0},
and the integral transform defined by (7) is essentially (up to a change of variables)
the Kontorovich–Lebedev transform.

3. The main result. For x, ν ∈ R
N , denote by σx

ν the probability measure on
the set � of real triangular arrays (Tk,i)1≤i≤k≤N defined by

∫
f dσx

ν = ψν(x)−1
∫
�(x)

f (T )eFν(T )
N−1∏
k=1

k∏
i=1

dTk,i .

For i = 1, . . . ,N − 1, and continuous η : (0,∞) → R
N , define

(Tiη)(t) = η(t) +
(

log
∫ t

0
eηi+1(s)−ηi(s) ds

)
(ei − ei+1),

where e1, . . . , eN denote the standard basis vectors in R
N . Let �1 be the identity

mapping (�1η = η) and, for 2 ≤ k ≤ N − 1, �k = T1 ◦ · · · ◦ Tk−1 ◦ �k−1. Finally,
we define

T = �N = (T1 ◦ · · · ◦ TN−1) ◦ · · · ◦ (T1 ◦ T2) ◦ T1.

The main result of this paper is the following.
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THEOREM 3.1.
(1) If (W(t), t > 0) is a standard Brownian motion in R

N with drift ν, then
(T W(t), t > 0) is a diffusion process in R

N with infinitesimal generator given by

Lν = 1

2
ψ−1

ν

(
H −

N∑
i=1

ν2
i

)
ψν = 1

2
� + ∇ logψν · ∇.

(2) For each t > 0, the conditional law of {(�kW)i(t),1 ≤ i ≤ k ≤ N}, given
{T W(s), s ≤ t; T W(t) = x}, is given by σx

ν .
(3) For each t > 0, the conditional law of W(t), given {T W(s), s ≤ t; T W(t) =

x}, is given by γ x
ν , where∫

RN
e(λ,y)γ x

ν (dy) = ψν+λ(x)

ψν(x)
, λ ∈ C

N.

(4) If μν
t denotes the law of T W(t), then

μν
t (dx) = exp

(
−1

2

N∑
i=1

ν2
i t

)
ψν(x)ϑt (x) dx,

where

ϑt(x) =
∫
ιRN

ψ−λ(x)e
∑

i λ2
i t/2sN(λ) dλ.(11)

It is easy to see that the process ({�kW)i(t),1 ≤ i ≤ k ≤ N}, t > 0) is Markov.
Indeed, setting Zk,i = (�kW)i , it follows from the construction that Z is a Markov
process taking values in � which satisfies the system of stochastic differential
equations: dZ1,1 = dW1 and, for k = 2, . . . ,N ,

dZk,1 = dZk−1,1 + eZk,2−Zk−1,1 dt,

dZk,2 = dZk−1,2 + (eZk,3−Zk−1,2 − eZk,2−Zk−1,1) dt,

...

dZk,k−1 = dZk−1,k−1 + (eZk,k−Zk−1,k−1 − eZk,k−1−Zk−1,k−2) dt,

dZk,k = dWk − eZk,k−Zk−1,k−1 dt.

The infinitesimal generator of this process is given by

Aν = 1

2

∑
1≤i≤k≤N

∂2

∂z2
k,i

+ ∑
1≤i≤k<l≤N

∂2

∂zk,i ∂zl,i

+ ∑
1≤i≤k≤N

bk,i(z)
∂

∂zk,i

,

where

b1,1(z) = ν1;
bk,k(z) = νk − ezk,k−zk−1,k−1, k = 2, . . . ,N;
bk,1(z) = ezk,1−zk−1,1, k = 2, . . . ,N;
bk,i(z) = ezk,i+1−zk−1,i − ezk,i−zk−1,i−1, 1 < i < k ≤ N.
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The main content of Theorem 3.1 is the fact that ZN,· is a Markov process, with
respect to its own filtration. The reason it holds is because

Lν ◦ �ν = �ν ◦ Aν,(12)

where �ν is the Markov operator defined by

�νf (x) =
∫

f (z)σ x
ν (dz).(13)

There is an additional (and nontrivial) technical issue related to the fact that these
processes start at a particular entrance law coming from “−∞,” but the intertwin-
ing relation (12) lies at the heart of the proof. Actually, the proof of Theorem 3.1
given below is based on some intermediate intertwining relations which exploit the
recursive structure of the quantum Toda lattice and the intertwining relation (12)
is obtained as a consequence, but it should, nevertheless, be regarded as the ana-
lytic counterpart of Theorem 3.1. As far as we are aware, the intertwining relation
(12) and its intermediaries (given in Section 7 below) have not been previously
considered in the literature.

The operator T was introduced (using a different notation) in the paper [41],
where it was surmised, based on heuristic arguments, that T W should be a dif-
fusion process which has the same law as a Brownian motion conditioned, in an
appropriate sense, on the asymptotic behavior of its exponential functionals. In
[3] it was observed that such a conditioned Brownian motion can be defined and,
moreover, is closely related to the quantum Toda lattice, thus providing the im-
petus for the present work. The above notation used to define T follows a more
general framework which has been developed in the papers [5, 6]. It is shown in
[5] that the operators Ti satisfy the braid relations, that is,

Ti ◦ Ti+1 ◦ Ti = Ti+1 ◦ Ti ◦ Ti+1, 1 ≤ i < N.

It follows that for each element σ ∈ SN we can uniquely define

Tσ = Ti1 ◦ · · · ◦ Tip ,

where σ = (i1, i1 +1) · · · (ip, ip +1) is any reduced decomposition of σ as a prod-
uct of adjacent transpositions. The operator T corresponds to the longest element
of SN , that is, T = Tσ0, where

σ0 =
(

1 2 · · · N

N N − 1 · · · 1

)
.

The mapping

η[0,t] �→ ({(�kη)i(t),1 ≤ i ≤ k ≤ N}, {T η(s), s ≤ t})
is a geometric variant of the RSK (Robinson–Schensted–Knuth) correspondence.
We will explain this connection later and give an interpretation of the measure γ x

0
appearing in Theorem 3.1 as a geometric analogue of the Duistermaat–Heckman



444 N. O’CONNELL

measure associated with the point x. The definition of the operator T extends
naturally to other Lie algebras, with SN replaced by the corresponding Weyl group
[5, 6]. It is natural to expect the analogue of Theorem 3.1 to hold in this more
general setting.

4. The law of the partition function. By Brownian scaling, it is easy to see
that the processes (ZN

t (β), t ≥ 0) and (β−2(N−1)ZN
β2t

(1), t ≥ 0) are identical in

law, so for convenience we will define ZN
t = ZN

t (1). The transformation T W is
related to the random variable ZN

t as follows. We first note that T satisfies (cf. [5],
Lemma 4.6)

(−σ0) ◦ T = T ◦ (−σ0),(14)

where −σ0(η1, . . . , ηN) = (−ηN, . . . ,−η1) and ηi denotes the ith coordinate of
the path η. It is straightforward to see from the definition of T that

(T W)N(t)

= − log
∫

0<s1<···<sN−1<t
e−(W1(s1)+W2(s1,s2)+···+WN(sN−1,t)) ds1 · · · dsN−1.

From the relation (14) we have

(T W)1(t) = log
∫

0<s1<···<sN−1<t
eWN(s1)+WN−1(s1,s2)+···+W1(sN−1,t) ds1 · · · dsN−1.

Thus, if we set W = (BN, . . . ,B1), then logZN
t = (T W)1(t) and we deduce the

following:

COROLLARY 4.1. The stochastic process (logZN
t , t > 0) has the same law as

the first coordinate of the diffusion process in R
N with infinitesimal generator

L = 1
2ψ−1

0 Hψ0 = 1
2� + ∇ logψ0 · ∇,

started according to the entrance law

μt(dx) = ψ0(x)ϑt (x) dx, t > 0,

where ϑt is given by (11). In particular, for u ∈ R, we have

P(logZN
t ≤ u) = μt({x ∈ R

N :x1 ≤ u}).

Note that the relation (14) also implies that the probability measure μt is in-
variant under the transformation −σ0. Combining Corollary 4.1 with the formula
(10), we obtain [after shifting the contours in the integral (11) to the left in order
to apply Fubini’s theorem] the following:
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COROLLARY 4.2. For s > 0,

Ee−sZN
t =

∫
s
∑

λi
∏
i

�(−λi)
Ne(1/2)

∑
i λ2

i t sN(λ) dλ,

where the integral is along vertical lines with λi < 0 for all i.

The probability measure on ιRN with density proportional to

e
∑

i λ2
i t/2sN(λ) ≡ 1

(2πι)NN !e
∑

i λ2
i t/2

∏
i>j

(λi − λj )
∏
i<j

sinπ(λi − λj )

π

can be interpreted (up to a factor of ιπ ) as the law, at time 1/t , of the radial part
of a Brownian motion in the symmetric space of positive definite Hermitian ma-
trices or, equivalently, the law of the eigenvalues of a “perturbed GUE random
matrix” AN/

√
t + RN/t , where AN is an N × N GUE random matrix and RN is

a diagonal matrix with entries given by the vector π(N − 1,N − 3, . . . ,1 − N)

(see, e.g., [30]). In particular, it is a determinantal point process [29]. The above
expression for the moment generating function of ZN

t can thus be written as a
Fredholm determinant. It will be interesting to relate this, in a suitable scaling
limit, to the “crossover distributions” recently introduced in the context of KPZ
and the stochastic heat equation by Sasamoto and Spohn [49–52] and Amir, Cor-
win and Quastel [1], building on recent work of Tracy and Widom [58–61] on
the asymmetric simple exclusion process. See also [12–15, 46] for related recent
developments.

We conclude this section by remarking that the other coordinates of T W(t)

can also be interpreted as logarithmic partition functions, as follows. Define an
“up/right path” in R × Z to be an increasing path which either proceeds to the
right or jumps up by one unit. For each sequence 0 < s1 < · · · < sN−1 < t we can
associate an up/right path φ from (0,1) to (t,N) which has jumps between the
points (si, i) and (si, i + 1), for i = 1, . . . ,N − 1, and is continuous otherwise.
Then we can write

(T W)1(t) = logZN
t = log

∫
eE(φ) dφ,

where

E(φ) = B1(s1) + B2(s2) − B2(s1) + · · · + BN(t) − BN(sN−1)

and the integral is with respect to the Lebesgue measure on the Euclidean set of
all such paths. There is an analogue of Greene’s theorem in this context [5] (cf.
[34]) which yields a similar formula for the other coordinates, namely, for each
k = 2, . . . ,N ,

(T W)1(t) + · · · + (T W)k(t) = log
∫

eE(φ1)+···+E(φk) dφ1 · · · dφk,
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where the integral is with respect to the Lebesgue measure on the Euclidean set of
k-tuples of nonintersecting (disjoint) up/right paths with respective initial points
(0,1), . . . , (0, k) and respective end points (t,N − k + 1), . . . , (t,N). An interest-
ing property of this formulation is that it extends naturally to the continuum setting
of KPZ and the stochastic heat equation [44].

5. The case N = 2. When N = 2, the eigenfunctions ψν are given by

ψν(x) = 2 exp
(1

2(ν1 + ν2)(x1 + x2)
)
Kν1−ν2

(
2e(x2−x1)/2)

.

In this case, Theorem 3.1 is equivalent to the following theorem of Matsumoto and
Yor [36, 37].

THEOREM 5.1.
(1) Let (B

(μ)
t , t ≥ 0) be a standard one-dimensional Brownian motion with

drift μ, and define

Z
(μ)
t =

∫ t

0
e2B

(μ)
s −B

(μ)
t ds.

Then logZ(μ) is a diffusion process with infinitesimal generator

1

2

d2

dx2 +
(

d

dx
logKμ(e−x)

)
d

dx
,

where Kμ is the Macdonald function.

(2) The conditional law of B
(μ)
t , given {Z(μ)

s , s ≤ t;Z(μ)
t = z}, is given by the

generalized inverse Gaussian distribution
1
2Kμ(1/z)−1eμx exp

(− cosh(x)/z
)
dx.

(3) The law of Z
(μ)
t is given by

P
(
Z

(μ)
t ∈ dz

) = 2z−1θ1/z(t)Kμ(1/z)e−μ2t/2 dz,

where θr(t) is characterized by the Kontorovich–Lebedev transform

2
∫ ∞

0
Kλ(r)θr(t)

dr

r
= eλ2t/2, λ ∈ ιR.

The above Kontorovich–Lebedev transform can be inverted to obtain

θr(t) = 1

2π2

∫ ι∞
−ι∞

Kλ(r)e
λ2t/2λ sin(πλ)dλ.

The probability measure H
(1)
r (dt) = I0(r)

−1θr(t) dt is known as the first
Hartman–Watson law [24, 37]. It is also characterized by∫ ∞

0
e−ν2t/2θr(t) dt = Iν(r), ν > 0,

where Iλ is the modified Bessel function of the first kind.
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6. The zero-temperature limit. By Brownian scaling, we can write down a
version of Theorem 3.1 for general β > 0. We will state this in the case of zero
drift. For continuous η : (0,∞) → R

N , define

(T β
i η)(t) = η(t) + 1

β
log

(
β2

∫ t

0
eβ(ηi+1(s)−ηi(s)) ds

)
(ei − ei+1),

i = 1, . . . ,N − 1;
�

β
1 = Id.; �

β
k = T β

1 ◦ · · · ◦ T β
k−1 ◦ �

β
k−1, 2 ≤ k ≤ N;

T β = �
β
N = (T β

1 ◦ · · · ◦ T β
N−1) ◦ · · · ◦ (T β

1 ◦ T β
2 ) ◦ T β

1 .

Note that

1

β
logZN

t (β) = (T βW)1(t) − N − 1

β
logβ2.

COROLLARY 6.1.
(1) If W is a standard Brownian motion in R

N , then T βW is a diffusion in R
N

with generator �/2 + ∇ logψ0(β·) · ∇ .
(2) For each t > 0, the conditional law of {(�β

k W)i(t),1 ≤ i ≤ k ≤ N}, given

{T βW(s), s ≤ t; T βW(t) = x}, is given by σ
βx
0 (β·).

(3) For each t > 0, the conditional distribution of W(t), given {T βW(s), s ≤ t;
T βW(t) = x}, is given by γ

βx
0 (β·).

(4) The law of T βW(t) is given by μβ2t (β·).

Letting β → ∞, we recover the multidimensional version of Pitman’s “2M −
X” theorem obtained in [5–7, 40, 43]. For continuous η : (0,∞) → R

N , with
η(0) = 0, define

(Piη)(t) = η(t) − inf
0<s<t

(
ηi(s) − ηi+1(s)

)
(ei − ei+1), i = 1, . . . ,N − 1;

�1 = Id.; �k = P1 ◦ · · · ◦ Pk−1 ◦ �k−1, 2 ≤ k ≤ N;
P = �N = (P1 ◦ · · · ◦ PN−1) ◦ · · · ◦ (P1 ◦ P2) ◦ P1.

By the method of Laplace, as β → ∞, T βW → PW uniformly on compact
intervals and, for each t > 0 and 1 ≤ i ≤ k ≤ N , (�

β
k W)i(t) → (�kW)i(t). For

1 ≤ k ≤ N , Xk = ((�kW)1, . . . , (�kW)k). By construction, the stochastic process
X(t) = (X1(t), . . . ,XN(t)), t ≥ 0, is Markov and takes values in the Gelfand–
Tsetlin cone

GTN = {(x1, . . . , xN) ∈ C1 × · · · × CN :xk+1
i+1 ≤ xk

i ≤ xk+1
i ,1 ≤ i ≤ k ≤ N − 1},

where

Ck = {x ∈ R
k :x1 > · · · > xk}.
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It is a N(N − 1)/2-dimensional Brownian motion with singular covariance re-
flected in GTN via an explicit Skorohod reflection map. But we do not need these
facts, and refer the reader to the papers [6, 40, 43] for details.

From the integral formula (4) we have

ψ0(βx)

=
∫
�(βx)

exp

(
−

N−1∑
k=1

k∑
i=1

(eTk,i−Tk+1,i + eTk+1,i+1−Tk,i )

)
N−1∏
k=1

k∏
i=1

dTk,i

= βN(N−1)/2

×
∫
�(x)

exp

(
−

N−1∑
k=1

k∑
i=1

(
e
β(T ′

k,i−T ′
k+1,i ) + e

β(T ′
k+1,i+1−T ′

k,i )
)) N−1∏

k=1

k∏
i=1

dT ′
k,i .

Write xk
i = T ′

k,i . As β → ∞, if x ∈ CN , the integrand converges to 1 if
(x1, . . . , xN) lies in the Gelfand–Tsetlin polytope

GTN(x) = {(x1, . . . , xN) ∈ GTN :xN = x},
and 0 otherwise. It is well known (e.g., by Weyl’s dimension formula) that the
N(N − 1)/2-dimensional Euclidean volume of GTN(x) is(

N−1∏
k=1

k!
)−1

h(x),

where h is given by (2). It follows that, for x ∈ CN ,

lim
β→∞β−N(N−1)/2ψ0(βx) =

(
N−1∏
k=1

k!
)−1

h(x).(15)

Similarly, the probability measure σ
βx
0 (β·) converges as β → ∞ to the uniform

probability measure on GTN(x). Putting all of this together, letting β → ∞ in
the statement of Corollary 6.1, we immediately recover parts (1) and (2) of the
following theorem.

THEOREM 6.1 ([5–7, 40, 43]).
(1) If W is a standard Brownian motion in R

N , then XN = PX is a Brownian
motion conditioned (in the sense of Doob) never to exit CN .

(2) The conditional law of X(t), given {XN(s), s ≤ t;XN(t) = x}, is uniform
on GTN(x).

(3) The conditional law of W(t), given {XN(s), s ≤ t;XN(t) = x}, is given by
the probability measure κx which is characterized by∫

RN
e(λ,y)κx(dy) =

(
N−1∏
k=1

k!
)∑

σ∈SN
(−1)σ e(σλ,x)

h(x)h(λ)
.
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Part (3) of the above theorem can be deduced from part (2), noting that∑k
i=1 Xk

i = ∑k
i=1 Wi , for each 1 ≤ k ≤ N . Comparing this with Corollary 6.1(3)

yields the asymptotic formula: for x ∈ CN ,

lim
β→∞β−N(N−1)/2ψλ/β(βx) =

∑
σ∈SN

(−1)σ e(σλ,x)

h(λ)
.(16)

This formula can also be seen as a consequence of an alternative representation of
ψλ as an alternating sum of fundamental Whittaker functions [3, 25, 31].

The mapping

η[0,t] �→ ({(�kη)i(t),1 ≤ i ≤ k ≤ N}, {Pη(s), s ≤ t})
is a continuous version of the RSK correspondence [5, 6, 40]. The mapping

η[0,t] �→ ({(�kη)i(t),1 ≤ i ≤ k ≤ N}, {T η(s), s ≤ t})
is a continuous version of the geometric (or “tropical”) RSK introduced by Kir-
illov [34] (see also [4, 39]). The probability measure κx is the (normalized)
Duistermaat–Heckman measure associated with the point x. In this setting it can
be interpreted, via the Harish–Chandra formula, as the conditional distribution
of the diagonal of a N × N GUE random matrix given its eigenvalues x. The
probability measure γ x

0 of Theorem 3.1 can thus be interpreted as a geometric
analogue of the Duistermaat–Heckman measure. In keeping with this analogy, it
is natural to record the following analogue of the Littlewood–Richardson rule,
which follows from Theorem 3.1(3) (cf. [6], Theorem 5.16(ii)). For s, t > 0, de-
fine τsW(·) = W(s + ·) − W(s) and

Gs,t = σ {T W(r),0 < r ≤ s; (T τsW)(u),0 < u ≤ t}.

COROLLARY 6.2. For each x, y ∈ R
N ,

ψλ(x)

ψ0(x)

ψλ(y)

ψ0(y)
=

∫
RN

ψλ(z)

ψ0(z)
γ x,y(dz),(17)

where γ x,y is a probability measure on R
N which can be interpreted, for s, t > 0,

as the conditional law of T W(s + t) given Gs,t , T W(s) = x and (T τsW)(t) = y.

When N = 2, (17) is equivalent to the formula

Kν(z)Kν(w) = 1

2

∫ ∞
0

e(−1/2)[t+(z2+w2)/t]Kν

(
zw

t

)
dt

t
.

Theorem 6.1, in the case N = 2, is equivalent to Pitman’s celebrated “2M −
X” theorem [45], which states that, if Xt , t ≥ 0, is a standard one-dimensional
Brownian motion, then 2 max0≤s≤t Xs − Xt , t ≥ 0, is a three-dimensional Bessel
process. Setting W = (BN, . . . ,B1) as before, the random variable MN

1 defined by
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(1) can be written as MN
1 = XN

1 (1). Thus, we also recover the fact [2, 23] that MN
1

has the same law as the largest eigenvalue of a N × N GUE random matrix.
Theorem 6.1 has been generalized to arbitrary finite Coxeter groups in the pa-

pers [5, 6]. The definition of the operator T also extends naturally to other Lie
algebras, with SN replaced by the corresponding Weyl group. This is described in
[5, 6], where various Lie-theoretic interpretations are given. It is natural to expect
the analogue of Theorem 3.1 to hold in this more general setting.

7. Intertwining relations. Consider the following extension of the operator
Q(N)

θ , defined on a suitable class of functions f : RN × R
N−1 → R by

R(N)
θ f (x) =

∫
RN−1

Q
(N)
θ (x, y)f (x, y) dy.

By a straightforward calculation, we obtain(
H(N) − θ2) ◦ R(N)

θ = R(N)
θ ◦ U

(N)
θ ,(18)

where

U
(N)
θ =

N−1∑
i=1

∂2

∂y2
i

− 2
N−2∑
i=1

eyi+1−yi +
N∑

i=1

∂2

∂x2
i

+ 2(θ + ey1−x1)
∂

∂x1

+ 2(θ + ey2−x2 − ex2−y1)
∂

∂x2

...

+ 2(θ + eyN−1−xN−1 − exN−1−yN−2)
∂

∂xN−1

+ 2(θ − exN−yN−1)
∂

∂xN

.

Further integration by parts yields(
H(N) − θ2) ◦ R(N)

θ = R(N)
θ ◦ V

(N)
θ ,(19)

where

V
(N)
θ =

N−1∑
i=1

∂2

∂y2
i

− 2
N−2∑
i=1

eyi+1−yi +
N∑

i=1

∂2

∂x2
i

+ 2
(

∂

∂y1
+ ex2−y1

)
∂

∂x1
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+ 2
(

∂

∂y2
+ ex3−y2 − ex2−y1

)
∂

∂x2

...

+ 2
(

∂

∂yN−1
+ exN−yN−1 − exN−1−yN−2

)
∂

∂xN−1

+ 2(θ − exN−yN−1)
∂

∂xN

.

The intertwining relation (19) lies at the heart of this paper.

8. Proof of Theorem 3.1. We begin by using the intertwining relation (19)
to prove a Markov functions result. We will then proceed by induction to prove a
version of Theorem 3.1 for general starting position. The final step will be to let
the starting position x0 → −∞ (in a sense that will be made precise later). Let
ν ∈ R

N , and define

L(N)
ν = 1

2

(
ψ(N)

ν

)−1
(
H(N) −

N∑
i=1

ν2
i

)
ψ(N)

ν .

We consider a Markov process ((X(t), Y (t)), t ≥ 0) taking values in R
N ×R

(N−1),
defined as follows. The process Y evolves as an autonomous Markov process with
infinitesimal generator L(N−1)

ν1,...,νN−1 . Let W be standard one-dimensional Brown-
ian motion, independent of Y , and define the evolution of the process X via the
stochastic differential equations

dX1 = dY1 + eX2−Y1 dt,

dX2 = dY2 + (eX3−Y2 − eX2−Y1) dt,

...

dXN−1 = dYN−1 + (eXN−YN−1 − eXN−1−YN−2) dt,

dXN = dW + (νN − eXN−YN−1) dt.

Then (X,Y ) is a Markov process taking values in R
N × R

(N−1) with generator

G(N)
ν = ψ(N−1)

ν1,...,νN−1
(y)−1

(
V (N)

νN
−

N−1∑
i=1

ν2
i

)
ψ(N−1)

ν1,...,νN−1
(y).

Consider the Markov operator �
(N)
ν defined, for bounded measurable functions on

R
N × R

(N−1), by

�(N)
ν f (x) = ψ(N)

ν (x)−1
∫

RN−1
Q

(N)
θ (x, y)ψ(N−1)

ν1,...,νN−1
(y)f (x, y) dy.
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For x ∈ R
N , define a probability measure λx

ν on R
N × R

(N−1) by∫
f dλx

ν = �(N)
ν f (x).

By (19), we have the intertwining relation

L(N)
ν ◦ �(N)

ν = �(N)
ν ◦ G(N)

ν .

From the theory of Markov functions [48], we conclude the following proposition:

PROPOSITION 8.1. Fix x0, ν ∈ R
N and let (X,Y ) be a Markov process with

infinitesimal generator G(N)
ν , started with initial law λ

x0
ν . Then X is a Markov

process with infinitesimal generator L(N)
ν , started at x0. Moreover, for each t ≥ 0,

the conditional law of Y(t), given {X(s), s ≤ t;X(t) = x}, is given by

ψ(N)
ν (x)−1Q(N)

νN
(x, y)ψ(N−1)

ν1,...,νN−1
(y) dy.

The next step is to deduce, by induction, an analogue of Theorem 3.1 for general
starting position. We construct a Markov process Z taking values in � as follows.
Let W be a standard Brownian motion in R

N with drift ν. The evolution of Z is
defined recursively by dZ1,1 = dW1 and, for k = 2, . . . ,N ,

dZk,1 = dZk−1,1 + eZk,2−Zk−1,1 dt,

dZk,2 = dZk−1,2 + (eZk,3−Zk−1,2 − eZk,2−Zk−1,1) dt,

...

dZk,k−1 = dZk−1,k−1 + (eZk,k−Zk−1,k−1 − eZk,k−1−Zk−1,k−2) dt,

dZk,k = dWk − eZk,k−Zk−1,k−1 dt.

PROPOSITION 8.2. Fix x0, ν ∈ R
N and let Z be the process defined as above

with initial law σ
x0
ν . Then ZN,· is a Markov process with infinitesimal generator

L(N)
ν , started at x0. Moreover, for each t ≥ 0, the conditional law of Z(t), given

{ZN,·(s), s ≤ t;ZN,·(t) = x}, is given by σx
ν , and the intertwining relation (12)

holds.

Next we give a formula for the process Z started at Z(0) = z in terms of the
driving Brownian motion W . For i = 1, . . . ,N − 1, and continuous η : (0,∞) →
R

N , define

(T ξ
i η)(t) = η(t) + log

(
eξ +

∫ t

0
eηi+1(s)−ηi(s) ds

)
(ei − ei+1).

Fix z ∈ � and, for 1 ≤ i ≤ k ≤ N − 1, define

ξk,i = zk,i − zk+1,i+1.
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Let �z
1 be the identity map and, for 2 ≤ k ≤ N ,

�z
k = (T ξk−1,1

1 ◦ · · · ◦ T ξk−1,k−1
k−1 ) ◦ �z

k−1.

Then, for 1 ≤ i ≤ k ≤ N , we can write

Zk,i(t) = z1,1 + (�z
kW)i(t).

For convenience we will write T z = �z
N and note that ZN,· = z1,11+ T zW , where

1 = (1,1, . . . ,1). Proposition 8.2 can now be restated as follows.

PROPOSITION 8.3. Fix x0, ν ∈ R
N . Let W be a standard Brownian motion in

R
N with drift ν and ζ a random element of � chosen according to the distribution

σ
x0
ν , independent of W . Then ZN,· = ζ1,11 + T ζW is a Markov process with in-

finitesimal generator L(N)
ν , started at x0. Moreover, for each t ≥ 0, the conditional

law of Z(t), given {ZN,·(s), s ≤ t;ZN,·(t) = x}, is given by σx
ν .

For k = 1, . . . ,N , define

ρk =
(

k − 1

2
,
k − 1

2
− 1, . . . ,1 − k − 1

2
,−k − 1

2

)
.

We remark that the vector ρk is half the sum of the positive roots associated with
the Lie algebra glk . To complete the proof of Theorem 3.1, we will consider the
starting position x0 = −MρN , and let M → ∞. For this we need to understand

the asymptotic behavior of ψν(−MρN) and the probability measures σ
−MρN

ν as
M → ∞. It was shown by Rietsch ([47], Theorem 10.2) that the function −F0(T )

on �(x) has a unique critical point T x , which is a minimum, and that the Hessian
is everywhere totally positive. It is straightforward to verify from the critical point
equations that

1

k

k∑
i=1

T x
k,i = 1

N

N∑
i=1

xi, 1 ≤ k ≤ N − 1.

Define Sν(T ) = Fν(T ) − F0(T ) and consider the change of variables

T ′
k,i = Tk,i + Mρk

i , 1 ≤ 1 ≤ k ≤ N.

Then we can write

ψν(−MρN) =
∫
�(0)

eSν(T
′)+eM/2 F0(T

′)
N−1∏
k=1

k∏
i=1

dT ′
k,i .

It follows, by Laplace’s method (see, e.g., [17], Theorem 4.14), that the following
asymptotic equivalence holds:

ψν(−MρN) ∼ Ce−N(N−1)M/8 exp
(
eM/2F0(T

0)
)

(20)



454 N. O’CONNELL

as M → ∞, where C is a constant which is independent of ν. Moreover, recalling
the above change of variables, we see that, in probability, ζk,i − ζk+1,i+1 → −∞
for each 1 ≤ i ≤ k ≤ N − 1 and ζ1,1 → 0. It follows by the continuous mapping
theorem that that ζ1,11 + T ζW converges in law to T W , and, for each t > 0,
{(�ζ

kW)i(t),1 ≤ i ≤ k ≤ N} converges in law to {(�kW)i(t),1 ≤ i ≤ k ≤ N}.
We conclude that T W is a diffusion with generator L(N)

ν , and that the conditional
law of {(�kW)i(t),1 ≤ i ≤ k ≤ N}, given {T W(s), s ≤ t; T W(t) = x}, is σx

ν .
This proves parts (1) and (2) of the theorem. Part (3) of the theorem follows from
part (2), noting that for each k ≤ N ,

Wk =
k∑

i=1

(�kW)i −
k−1∑
i=1

(�k−1W)i.

Part (4) follows from part (3) by the spectral decomposition theorem.

REMARK 8.1. The asymptotic equivalence (20) is well known in the case
N = 2 and can be compared to the full asymptotic expansion obtained in [11] in
the case N = 3, where it was remarked that the leading term in the expansion is
independent of the parameter ν.

9. A symmetric version of Proposition 8.2. Proposition 8.2 has a “symmet-
ric” analogue which can be regarded as a geometric version of a result of Dubedat
[16] in the case N = 2, and Warren [62] in the general case. It is obtained by ap-
plying the intertwining relation (18) rather than (19). In this case, we construct a
Markov process S on � as follows. Let {Wk,i,1 ≤ i ≤ k ≤ N} be a collection of
independent standard one-dimensional Brownian motions. The evolution of S is
defined recursively by dS1,1 = dW1,1 and, for k = 2, . . . ,N ,

dSk,1 = dWk,1 + (νk + eSk−1,1−Sk,1) dt,

dSk,2 = dWk,2 + (νk + eSk−1,2−Sk,2 − eSk,2−Sk−1,1) dt,

...

dSk,k−1 = dWk,k−1 + (νk + eSk−1,k−1−Sk,k−1 − eSk,k−1−Sk−1,k−2) dt,

dSk,k = dWk,k + (νk − eSk,k−Sk−1,k−1) dt.

PROPOSITION 9.1. Fix x0, ν ∈ R
N and let S be the process defined as above

with initial law σ
x0
ν . Then SN,· is a Markov process with infinitesimal generator

L(N)
ν , started at x0. Moreover, for each t ≥ 0, the conditional law of S(t), given

{SN,·(s), s ≤ t;SN,·(t) = x}, is σx
ν .

In the case N = 2, with zero drift, we deduce the following corollary:
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COROLLARY 9.2. Let B1,B2 and B3 be independent standard one-dimen-
sional Brownian motions. Define

X(t) = B1(t) + log
∫ t

0
eB2(s)−B1(s) ds,

Y (t) = B3(t) − log
∫ t

0
eB3(s)−B2(s) ds.

Then (X + Y)/
√

2 is a standard Brownian motion and (X − Y)/
√

2 is a diffusion
process [independent of (X + Y)/

√
2] with infinitesimal generator

1

2

d2

dx2 +
(

d

dx
logK0(e

−x)

)
d

dx
.
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