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Dedicated to the memory of Marc Yor

Abstract How does one introduce randomness into a classical dynamical system
in order to produce something which is related to the ‘corresponding’ quantum
system? We consider this question from a probabilistic point of view, in the context
of some integrable Hamiltonian systems.

1 Introduction

Let! ! 1=2 and consider the evolution Px D !=x on the positive half-line. Then Rx D
"!2=x3, which is the equation of motion for the rational Calogero-Moser system
with Hamiltonian

1

2
p2 " !2

2x2
:

If we add noise, that is, if we consider the stochastic differential equation

dX D dBC !

X
dt;

where B is a standard one-dimensional Brownian motion, then X is a diffusion
process on the positive half-line with infinitesimal generator

L D 1

2
@2x C

!

x
@x:
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468 N. O’Connell

The assumption ! ! 1=2 ensures that X never hits zero. The operator L is related to
the quantum Calogero-Moser Hamiltonian

H D 1

2
@2x " !.! " 1/

2x2
;

via the ground state transform

L D  .x/!1H .x/;

where  .x/ D x!. Ignoring for the moment the discrepancy between the coupling
constants !2=2 and !.! " 1/=2, this provides a very simple example of a classical
Hamiltonian system which has the property that if we add noise in a suitable way
we obtain a diffusion process whose infinitesimal generator is simply related to the
corresponding quantum system.

Appealing as it is, this example is quite unique and, in fact, somewhatmisleading.
The only constant of motion is the Hamiltonian itself and, as Px D p, the evolution
Px D !=x necessarily has p2=2 " !2=2x2 D 0. It is not clear how to extend this
construction—together with its stochastic counterpart—to allow for other values.
In fact, there is a kind of ‘explanation’ for this limitation which will come later.

In the papers [21, 22] a certain probabilistic relation between the classical
and quantum Toda lattice was observed. This relation can be loosely described
as follows: starting with a particular construction of the classical flow on a
given sub-Lagrangian manifold, adding white noise to the constants of motion
yields a diffusion process whose infinitesimal generator is simply related to the
corresponding quantum system.

As we shall see, this relation extends naturally to some other integrable many-
body systems, specifically rational and hyperbolic Calogero-Moser systems. The
basic construction can be formulated in terms of kernel functions and Bäcklund
transformations. For more background on the (interrelated) role of kernel functions
and Bäcklund transformations in integrable systems see, for example, [9, 16, 24, 27]
and references therein. In the present paper, to illustrate the main ideas, we will
focus on rank-one (two particle) systems although most of the constructions extend
naturally to higher rank systems.

The examples we consider are of course very special, having the property that
there are kernel functions which unite the classical and quantum systems through a
kind of exact stationary phase property. Nevertheless, they should provide a useful
benchmark for exploring similar relations for other Hamiltonian systems.

The outline of the paper is as follows. In the next section, we illustrate the
basic construction of [21, 22] in the context of the rank one Toda lattice. In
this setting it is closely related to earlier results of Matsumoto and Yor [17] and
Baudoin [1]. In Sects. 3–5, we give analogous constructions for the rational and
hyperbolic Calogero-Moser systems. As we shall see, the above example should
in fact be seen as a particular degeneration of a more general construction for the
hyperbolic Calogero-Moser system, based on the kernel functions of Hallnäs and
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Stochastic Bäcklund Transformations 469

Ruijsenaars [9, 10]. In Sect. 6, we conclude with some remarks on how the solution
to the Kardar-Parisi-Zhang equation can also be interpreted from this point of view.

The following notation will be used throughout. If E is a topological space,
we denote by B.E/ the set of Borel measurable functions on E, by Cb.E/ the set
of bounded continuous functions on E and by P.E/ the set of Borel probability
measures on E. If E is an open subset of Rn, we denote by C2c.E/ the set of
continuously twice differentiable, compactly supported, functions on E.

2 The Toda Lattice

For the rank-one Toda lattice we consider the kernel function

K.x; u/ D exp ."e!x cosh u/ ;

and note that K satisfies

.@x lnK/2 " .@u lnK/2 D e!2x; (1)

and

@2x lnK " @2u lnK D 0: (2)

The corresponding Bäcklund transformation

Pu D "@u lnK D e!x sinh u; Px D @x lnK D e!x cosh u (3)

has the property that, if (3) holds, then x satisfies the equations of motion of the
Toda system with Hamiltonian

1

2
p2 " 1

2
e!2x;

and Pu D " is a conserved quantity for the coupled system. Indeed, differentiating (1)
with respect to x yields

Rx D @2x lnK @x lnK " @u@x lnK @u lnK D "e!2x; (4)

and differentiating (1) with respect to u gives

Ru D @2u lnK @u lnK " @x@u lnK @x lnK D 0: (5)

It also follows from (1) and (3) that " is an eigenvalue of the Lax matrix

!
p e!x

"e!x "p

"
:
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470 N. O’Connell

Now the equation Pu D " is equivalent to the critical point equation @u lnK" D 0,
where K" D e"uK. Using this equation, namely

sinh u D "ex; (6)

we can rewrite the evolution equation (3) as

Pu D "; Px D "C e!u!x D .@x C @u/ lnK": (7)

We note that (6) has a unique solution u".x/ D sinh!1."ex/ for any "; x 2 R. The
relation (6) is stable under the new evolution equations (7), and is now required
to be in force in order to guarantee that .x; p/ evolves according to the Toda flow
on the iso-spectral manifold corresponding to ". Given any " 2 R, the evolution
equations (7) are well-posed on the corresponding iso-spectral manifold (defined in
these coordinates by the relation (6)) in the sense that they admit a unique semi-
global solution. For any " 2 R and initial condition x.0/ D x0, the solution is given
explicitly for all t ! 0 by

u.t/ D u".x0/C "t; x.t/ D
(
ln
#
1
"
sinh u.t/

$
" ¤ 0

ln
#
ex0 C t

$
" D 0:

The evolution equations (7) provide the correct framework into which we can
introduce noise with the desired outcome.

Let H D .@2x " e!2x/=2, and write H" D H " "2=2. Combining (1) and (2) gives
the intertwining relation

H"K" D
#1
2
@2u " "@u

$
K": (8)

It follows, using the Leibnitz rule, that

 ".x/ D
Z 1

!1
K".x; u/du

is an eigenfunction of H with eigenvalue "2=2. We note that  ".x/ D 2K".e!x/,
where K#.z/ is the modified Bessel function of the second kind, also known as
Macdonald’s function.

Remark 1 The intertwining relation (8) and associated integral formula for the
eigenfunctions can be seen as a special case of those obtained by Gerasimov,
Kharchev, Lebedev and Oblezin [8] for the n-particle open Toda chain. The above
Bäcklund transformation is a special case of the one given by Wojciechowski [29]
which, as remarked in that paper, is closely related to a construction of Kac and
Van Moerbeke [11] for the periodic Toda chain. It can also be seen as a particular
degeneration of the Bäcklund transformation for the infinite particle system given
in Toda’s monograph [28].
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Consider the integral operator defined, for suitable f W R2 ! R, by

QK"f .x/ D
Z 1

!1
K".x; u/f .x; u/du;

and the differential operator, defined on D.A"/ D C2c.R2/, by

A" D
1

2
@2x C

1

2
@2u C @x@u C "@u C ."C e!u!x/ @x:

Proposition 1 For f 2 D.A"/,

H" QK"f D QK"A"f : (9)

Proof This follows from the intertwining relation (8). Recall that

.@x C @u/ lnK" D "C e!u!x:

By Leibnitz’ rule and integration by parts,

H" QK"f .x/ D H"

Z 1

!1
K"fdu

D
Z 1

!1

h
.H"K"/f C .@xK"/@xf C K"

1
2 @
2
x f
i
du

D
Z 1

!1

h
. 12 @

2
uK" " "@uK"/f C K".@x lnK"/@xf C K"

1
2 @
2
x f
i
du

D
Z 1

!1

h
K".

1
2 @
2
uf C"@uf /CK"..@x C @u/ lnK"/@xf " .@uK"/@xf CK"

1
2 @
2
x f
i
du

D
Z 1

!1

h
K".

1
2 @
2
uf C "@uf /C K"..@x C @u/ lnK"/@xf C K"@u@xf C K"

1
2 @
2
x f
i
du

D K"A"f ;

as required. ut
Now, if " 2 R, the intertwining relation (9) has a probabilistic meaning, which

we will soon make precise. It implies that there is a two-dimensional diffusion
process, characterized by the differential operator A", which has the property that,
with particular initial condition specified by the kernel K", its projection onto the
x-coordinate is a diffusion process in R which is characterised by a renormalisation

n.m.o-connell@warwick.ac.uk



472 N. O’Connell

of the operator H". Moreover, the two-dimensional diffusion process characterized
by A" is precisely the Bäcklund transformation, in the form of (7), with white noise
added to the constant of motion ". We will now make this statement precise.

Suppose " 2 R, let B be a standard one-dimensional Brownian motion and
consider the coupled stochastic differential equations obtained by adding white
noise to " in (7), that is

dU D dBC "dt; dX D dU C e!U!Xdt: (10)

This can be solved explicitly: for any initial condition .X0;U0/,

Ut D U0 C Bt C "t; Xt D Ut C ln
!
eX0!U0 C

Z t

0

e!2Usds
"
: (11)

As the function .x; u/ 7! ." C e!u!x; "/ is locally Lipschitz, it follows that, for
any initial condition, (11) is the unique solution to (10). Moreover, it is a diffusion
process inR2 with infinitesimal generator A" and the martingale problem for .A"; #/
is well-posed for any # 2 P.R2/. For more background on the relation between
stochastic differential equations and martingale problems see, for example, [6, 15].

Next we consider the diffusion process on R with infinitesimal generator

L" D  ".x/!1H" ".x/ D
1

2
@2x C @x ln ".x/ # @x:

This process was introduced by Matsumoto and Yor [17]. Observe that the drift

@x ln ".x/ D e!x K"C1.e
!x/

K".e!x/
;

is locally Lipschitz, behaves like e!x at "1 and vanishes at C1. It follows that
"1 is an entrance boundary, C1 is a natural boundary and, for any $ 2 P.R/,
the martingale problem for .L"; $/, with D.L"/ D C2c.R/, is well-posed.

Using the theory of Markov functions (see Appendix), the intertwining rela-
tion (9) yields the following result of Matsumoto and Yor [17] and Baudoin [1].

Theorem 1 Let $ 2 P.R/ and # D $.dx/#x.du/ 2 P.R2/, where

#x.du/ D  ".x/!1K".x; u/du:

Let .X;U/ be a diffusion process in R2 with initial condition # and infinitesimal
generator A". Then X is a diffusion process in R with infinitesimal generator L".
Moreover, for each t ! 0 and g 2 B.R/,

EŒg.Ut/j Xs; 0 $ s $ t% D
Z 1

!1
g.u/#Xt.du/;

almost surely.
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Proof This follows from the intertwining relation (9), using Theorem 4. The map
& W R2 ! R defined by &.x; u/ D x is continuous and the Markov transition kernel
' from R to R2 defined by

'f .x/ D
Z 1

!1
#x.du/f .x; u/; f 2 B.R/

satisfies '.g ı &/ D g for g 2 B.R/. Moreover, by (9),

L"'f D 'A"f ; f 2 D.A"/: (12)

Now, D.A"/ D C2c .R2/ is closed under multiplication, separates points and is
convergence determining. Finally, by Itô’s lemma and the intertwining relation (12),
the martingale problem for .L"; $/, now takingD.L"/ D '.D.A"//[C2c .R/, is also
well-posed, so we are done. ut

Fig. 1 The Toda flow in u
(horizontal) and x (vertical)
coordinates

To summarise, for any given value of the constant of motion " D Pu 2 R, the
classical flow in R2 is along the curve sinh u D "ex (see Fig. 1), according to the
evolution equations

Pu D "; Px D PuC e!u!x; (13)

and the x-coordinate satisfies the equation of motion Rx D "e!2x. If we add noise
to the constant of motion ", then the evolution is described by the stochastic
differential equations

dU D dBC "dt; dX D dU C e!U!Xdt (14)

and, for appropriate (random) initial conditions, the u-coordinate evolves as a
Brownian motion with drift " and the x-coordinate evolves as a diffusion process in
R with infinitesimal generator L". As (13) is essentially a rewriting of the Bäcklund
transformation (3), and in view of Theorem 1, it seems natural to refer to (14) as a
stochastic Bäcklund transformation, hence the title of this paper.
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To relate this to the semi-classical limit, consider the Hamiltonian

H."/ D "

2
@2x " 1

"
e!2x:

Now the eigenfunctions are given by

 
."/
" .x/ D

Z 1

!1
K".x; u/1="du;

and Theorem 1 can be restated as follows. Let X0 D x and choose U0 at random
according to the probability distribution

#."/x D  
."/
" .x/

!1K".x; u/1="du:

Let .X;U/ be the unique solution to the SDE

dU D
p
"dBC "dt; dX D dU C e!U!Xdt;

with this initial condition. Then X is a diffusion process in R with infinitesimal
generator given by

"

2
@2x C " @x ln 

."/
" .x/ # @x:

As " ! 0, the evolution of .X;U/ reduces to the evolution equations (7) and the
initial distribution of U0 concentrates on the unique solution u".x/ to the critical
point equation @u lnK" D 0. On the other hand, one might expect

" @x ln 
."/
" .x/! @x

%
lnK".x; u".x//

&
;

as is indeed the case, and the evolution of X reduces to the gradient flow

Px D @x
%
lnK".x; u".x//

&
;

which is equivalent to (7) thanks to the remarkable identity

@x
%
lnK".x; u".x//

&
D
%
@x lnK"%.x; u".x//:

3 Rational Calogero-Moser System

In this section, we formulate an analogous construction for the one-dimensional
rational Calogero-Moser system. Consider the kernel function

K.x; u/ D x2 " u2

x
; juj $ x;
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and note that K satisfies

.@x lnK/2 " .@u lnK/2 D 1=x2 (15)

and

@2x lnK " @2u lnK D 1=x2: (16)

The corresponding Bäcklund transformation

Pu D 1

x " u
" 1

xC u
D "@u lnK; Px D 1

x " u
C 1

xC u
" 1

x
D @x lnK (17)

has the property that, if (17) holds, then x satisfies the equations of motion of the
rational Calogero-Moser system with Hamiltonian

1

2
p2 " 1

2x2
;

and Pu D " is a conserved quantity for the coupled system. Indeed, as in the Toda
case, differentiating (15) with respect to x and u yields, respectively,

Rx D @2x lnK @x lnK " @u@x lnK @u lnK D "1=x3; (18)

and

Ru D @2u lnK @u lnK " @x@u lnK @x lnK D 0: (19)

It also follows from (15) and (17) that " is an eigenvalue of the Lax matrix

!
p 1=x

"1=x "p

"
:

As before, Pu D " is equivalent to the critical point equation @u lnK" D 0, where
K" D e"uK. Using this equation, namely

2u D ".x2 " u2/; (20)

we can rewrite the evolution equations as

Pu D "; Px D "C 2

xC u
" 1

x
D .@x C @u/ lnK": (21)

The critical point equation (20) has a unique solution u".x/ 2 ."x; x/ for any " 2 R
and x > 0. The relation (20) is stable under the new evolution equation (21), and
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476 N. O’Connell

is now required to be in force in order to guarantee that .x; p/ evolves according to
the rational Calogero-Moser flow on the iso-spectral manifold corresponding to ".
Given any " 2 R, the evolution equations (21) are well-posed on the corresponding
iso-spectral manifold (defined in these coordinates by the relation (20)) in the sense
that they admit a unique semi-global solution. For any " 2 R and initial condition
x.0/ D x0 > 0, the solution is given explicitly for all t ! 0 by

u.t/ D u".x0/C "t; x.t/ D

8
<

:

p
u.t/2 C 2u.t/=" " ¤ 0q
x20 C 2t " D 0:

As in the Toda case, the evolution equation (21) provide the correct framework into
which we can introduce noise with the desired outcome.

Let

H D 1

2
@2x " 1

x2
;

and write H" D H ""2=2. Combining (15) and (16) gives the intertwining relation

H"K" D
#1
2
@2u " "@u

$
K": (22)

It follows that

 ".x/ D
Z x

!x
K".x; u/du

is an eigenfunction of H with eigenvalue "2=2. To see this, first note that

@xK" D e"u
!
1C u2

x2

"
; @uK" D "2u

x
e"u C "K";

and

K".x; x/ D K".x;"x/ D 0:

By the Leibnitz rule,

@x " D
Z x

!x
@xK"duC K".x; x/C K".x;"x/ D

Z x

!x
@xK"du;

and so

@2x " D
Z x

!x
@2xK"duC @xK".x; x/C @xK".x;"x/

D
Z x

!x
@2xK"duC 2.e"x C e!"x/:
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It follows, using (22), that

H" " D
Z x

!x
H"K"duC .e"x C e!"x/

D
Z x

!x

#1
2
@2u " "@u

$
K"duC .e"x C e!"x/

D
#1
2
@u " "/K"

ˇ̌
ˇ
uDx

uD!x
C .e"x C e!"x/ D 0;

as required.

Remark 2 The above integral representation is a special case of theDixon-Anderson
formula [7]. The corresponding Bäcklund transformation is a special case of the one
introduced in [3], see also [2, 29].

We note that  0.x/ D 2x2=3,  !".x/ D  ".x/ and, for " > 0,

 ".x/ D "!3=2p2(x I3=2."x/;

where I#.z/ is the modified Bessel function of the first kind.
Let

D D f.x; u/ 2 R2 W juj < xg:

Consider the integral operator defined, for suitable f W D ! R, by

QK"f .x/ D
Z x

!x
K".x; u/f .x; u/du;

and the differential operator, defined on D.A"/ D C2c.D/, by

A" D
1

2
@2x C

1

2
@2u C @x@u C "@u C

!
"C 2

xC u
" 1

x

"
@x:

Proposition 2 For f 2 D.A"/,

H" QK"f D QK"A"f : (23)

Proof This follows from (22), as in the proof of Proposition 1. ut
Now suppose " 2 R. Let B be a standard one-dimensional Brownian motion

and consider the coupled stochastic differential equations obtained by adding white
noise to " in (21), that is

dU D dBC "dt; dX D dU C
!

2

X CU
" 1

X

"
dt: (24)
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Lemma 1 For any initial condition # 2 P.D/, the stochastic differential equa-
tion (24) has a unique strong solution with continuous sample paths in D. It is a
diffusion process in D with infinitesimal generator A" and the martingale problem
for .A"; #/ is well-posed.

Proof The function

.x; u/ 7!
!
"C 2

xC u
" 1

x
; "

"

is uniformly Lipschitz and bounded on

D) D f.x; u/ 2 D W xC u > ); x " u > )g

for any ) > 0, so by standard arguments, for any fixed initial condition .x; u/ 2 D,
the SDE (24) has a unique strong solution with continuous sample paths up until
the first exit time * from the domain D. We are therefore required to show that
* D C1 almost surely. As Xt " Ut is non-decreasing, this is equivalent to showing
that Yt D XtCUt almost surely never vanishes.We show this by a simple comparison
argument. Set

b.x; u/ D 2

xC u
" 1

x
D x " u

xC u
1

x
;

and note that for .x; u/ 2 D with x " u ! ı, where ı > 0,

b.x; u/ >
2

xC u
" 2

ı
:

Indeed, if x $ ı=2 then

b.x; u/ D x " u
xC u

1

x
! ı

xC u
2

ı
>

2

xC u
" 2

ı
I

on the other hand, if x > ı=2, then

b.x; u/ D 2

xC u
" 1

x
>

2

xC u
" 2

ı
:

Now,

dY D 2dU C b.X;U/dt;

and it is straightforward to see that the one-dimensional SDE

dR D 2dU C
!
2

R
" 2

ı

"
dt

has a unique strong solution with continuous sample paths in .0;1/ for any
R0 D r > 0; by the usual boundary classification 0 is an entrance boundary for
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this diffusion. Thus, if .X0;U0/ D .x; u/ and we set ı D x " u and r D xC u, then
Yt ! Rt > 0 almost surely for all t ! 0, proving the first claim. The second claim
follows. ut

Combining this with the intertwining relation (23), we obtain:

Theorem 2 Let $ 2 P..0;1// and # D $.dx/#x.du/ 2 P.D/, where

#x.du/ D  ".x/!1K".x; u/du:

Let .X;U/ be a diffusion process in D with initial condition # and infinitesimal
generator A". Then X is a diffusion process in .0;1/ with infinitesimal generator

L" D  ".x/!1H" ".x/ D
1

2
@2x C @x ln ".x/ # @x:

Moreover, for each t ! 0 and g 2 B.R/,

EŒg.Ut/j Xs; 0 $ s $ t% D
Z Xt

!Xt

g.u/#Xt.du/;

almost surely.

Proof This follows from the intertwining relation (23) using Theorem 4. First note
that we can identify D with R2 via the one-to-one mapping .x; u/ 7! .ln.x C
u/; ln.x " u// and thus regard D, equipped with the metric induced from the
Euclidean metric on R2, as a complete, separable, locally compact metric space.
Similarly, we identify .0;1/ with R via the one-to-one mapping x 7! ln x and
regard .0;1/, equipped with the metric induced from the Euclidean metric on R,
as a complete, separable metric space. Note that this does not alter the topologies
on D and .0;1/, or the definitions of B.D/, Cb.D/, P.D/, C2c .D/, B..0;1//,
Cb..0;1//, P..0;1//, C2c ..0;1//, and so on: it is just a smooth change of
variables.

The map & W D ! .0;1/ defined by &.x; u/ D x is continuous and the Markov
transition kernel' from .0;1/ to D defined by

'f .x/ D
Z x

!x
#x.du/f .x; u/; f 2 B.D/

satisfies '.g ı &/ D g for g 2 B..0;1//. Moreover, by (23),

L"'f D 'A"f ; f 2 D.A"/: (25)

Now, D.A"/ D C2c .D/ is closed under multiplication, separates points and is
convergence determining. Thus, all that remains to be shown is that the martingale
problem for .L"; $/, for some D.L"/ % '.D.A"//, is well-posed.

n.m.o-connell@warwick.ac.uk



480 N. O’Connell

As  ".x/ D  !".x/, we can assume " ! 0. The drift b".x/ D @x ln ".x/ is
given by 2=x if " D 0 and, for " > 0,

b".x/ D
1

2x
C "

I03=2."x/

I3=2."x/
D 1

2x
C "

I1=2."x/C I5=2."x/
2I3=2."x/

:

This is bounded below by 1=2x and converges to " as x ! C1. In fact, H" " D 0
implies

@2x ln .x/ D 2=x2 " "2 " b".x/2;

hence b".x/ is uniformly Lipschitz and bounded on .a;1/ for any a > 0. It
follows that 0 is an entrance boundary and C1 is a natural boundary for this one-
dimensional diffusion process and the martingale problem for .L"; $/ withD.L"/ D
C2c..0;1// is well-posed. By Itô’s lemma and the intertwining relation (25), we
conclude that the martingale problem for .L"; $/ with D.L"/ D '.D.A"// [
C2c..0;1// is also well-posed, as required. ut

Fig. 2 The rational Calogero-Moser flow in D, shown here with u as the horizontal and x as the
vertical coordinate

To summarise, for any given value of the constant of motion " D Pu 2 R, the
classical flow in D is along the curve 2u D ".x2 " u2/ (see Fig. 2), according to the
evolution equations

Pu D "; Px D PuC 2

xC u
" 1

x
;

and the x-coordinate satisfies the equation of motion Rx D "1=x3. Adding noise to
the constant of motion " gives the stochastic Bäcklund transformation

dU D dBC "dt; dX D dU C
!

2

X C U
" 1

X

"
dtI
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according to Theorem 2, for appropriate (random) initial conditions, U evolves as
a Brownian motion with drift " and the X evolves as a diffusion process in .0;1/
with infinitesimal generator L".

When " D 0, as u0.x/ D 0, the Bäcklund transformation reduces to Px D 1=x, as
in the example discussed in the introduction. Note however that in this setting

L0 D
1

2
@2x C

2

x
@x;

and the stochastic differential equations (24) do not reduce to the one discussed in
the introduction which, for example, gives the simpler construction of the diffusion
process with generator L0 as the solution to the stochastic differential equation

dX D dBC 2

X
dt:

To see how the above construction relates to the semi-classical limit, let us
introduce a parameter ! ! 1 and consider

H D 1

2!
@2x " 1C !

2x2
:

Then all of the above carries over with K" replaced by .K"/! and

 
.!/
" .x/ D

Z x

!x
K".x; u/!du:

In this setting, Theorem 2 can be restated as follows. Let B be a Brownian motion
and .X;U/ the unique strong solution in D to

dU D !!1=2dBC "dt; dX D dU C
!

2

X C U
" 1

X

"
dt (26)

with X0 D x > 0 and U0 chosen at random in ."x; x/ according to

#.!/x .du/ D  
.!/
" .x/!1K".x; u/!du:

Then X evolves as a diffusion process in .0;1/ with infinitesimal generator

1

2!
@2x C

1

!
@x ln 

.!/
" .x/@x:

When ! ! 1, the SDE (26) reduces to the deterministic evolution (21) and the
initial distribution ıx & #

.!/
x concentrates on ıx & ıu".x/ where u".x/ is the unique

solution in ."x; x/ to the critical point equation @u lnK" D 0 or, equivalently
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2u D ".x2 " u2/. On the other hand, one might expect

1

!
@x ln 

.!/
" .x/! @x ŒlnK".x; u".x//% ;

(which is indeed the case) and so in the limit as ! ! 1, the evolution of X is
according to the gradient flow

Px D @x ŒlnK".x; u".x//% :

Comparing this with (21) gives, as in the Toda case,

@x ŒlnK".x; u".x//% D Œ@x lnK"% .x; u".x//;

which can be verified directly.
If "1=2 $ ! $ 1 and we consider

H D 1

2
@2x " !.!C 1/

2x2
;

then things are more complicated, because now the evolution

dU D dBC "dt; dX D dU C !

!
2

X C U
" 1

X

"
dt

can reach the boundary of D and one needs to introduce reflecting boundary
conditions on the boundary xCu D 0 in the x direction to ensure that the appropriate
intertwining relation holds; even then, proving the analogue of Theorem 2 is
considerablymore technical. One can also consider the case"3=2 $ ! < "1=2, but
then the diffusion with infinitesimal generator L" will also require either reflecting
(for ! > "3=2) or absorbing (for ! D "3=2) boundary conditions at zero.

Formally it can be seen that the analogue of Theorem 2, in the case ! D 0,
corresponds to Pitman’s ‘2M"X’ theorem, for general drift and initial condition [25,
26], which can be stated as follows. Let x ! 0 and U be a Brownian motion with
drift " and U0 chosen at random in Œ"x; x% with probability density proportional to
e"u. Set

Xt D Ut " minf2 inf
s"t

Us;U0 " xg; t ! 0:

Then .X;U/ is a reflected Brownian motion (with singular covariance) in the closure
of D and X is a diffusion process in Œ0;1/ started at x with infinitesimal generator

1

2
@2x C " coth."x/@x:
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4 Hyperbolic Calogero-Moser System I

The above example extends to the hyperbolic case, taking

K.x; u/ D
h sinh

#
) xCu

2

$
sinh

#
) x!u

2

$

sinh )x

i!
; juj < x:

We will assume for convenience that ! ! 1. Now,

.@x lnK/2 " .@u lnK/2 D
)2!2

sinh2 )x
(27)

and

@2x lnK " @2u lnK D )2!

sinh2 )x
: (28)

The corresponding Bäcklund transformation

Pu D "@u lnK; Px D @x lnK (29)

agrees with the one given in [29] and has the property that, if (29) holds, then x
satisfies the equations of motion of the hyperbolic Calogero-Moser system with
Hamiltonian

1

2
p2 " )2!2

2 sinh2 )x
; (30)

and Pu D " is a conserved quantity for the coupled system. Indeed, as before,
differentiating (27) with respect to x and u yields, respectively,

Rx D @2x lnK @x lnK " @u@x lnK @u lnK D @x
)2!2

2 sinh2 )x
; (31)

and

Ru D @2u lnK @u lnK " @x@u lnK @x lnK D 0: (32)

It also follows from (27) and (29) that " is an eigenvalue of the Lax matrix

!
p )!= sinh )x

")!= sinh )x "p

"
: (33)
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The equation Pu D " is equivalent to the critical point equation @u lnK" D 0.
Using this equation, namely

coth
#
)
x " u
2

$
" coth

#
)
xC u
2

$
D 2"

)!
; (34)

we can rewrite the evolution equation (29) as

Pu D "; Px D "C b.x; u/ D .@x C @u/ lnK"; (35)

where

b.x; u/ D .@x C @u/ lnK D !)

'
coth

!
)
xC u
2

"
" coth )x

(
:

Equation (34) has a unique solution u".x/ 2 R for each x > 0 and " 2 R. The
relation (34) is stable under the new evolution equations (35), and is now required
to be in force in order to guarantee that .x; p/ evolves according to the hyperbolic
Calogero-Moser flow on the iso-spectral manifold corresponding to ".

Note that u0.x/ D 0 for all x > 0, so when " D 0, we must have u.t/ D 0 for all
t ! 0 and the equation for x simplifies to Px D )!= sinh )x, which admits a unique
semi-global solution for any initial condition x.0/ D x0 > 0, defined for all t ! 0
by

x.t/ D 1

)
cosh!1 # cosh )x0 C )2!t

$
: (36)

For " 2 Rnf0g, the function u" is a bijection from .0;1/ to R, with inverse
given by

u!1
" .u/ D

2

)
cosh!1

r
)!

2"
sinh )uC cosh2

)u
2
:

It follows that, for any given " 2 R, the evolution equations (35) are well-
posed on the corresponding iso-spectral manifold (defined in these coordinates by
the relation (34)) in the sense that they admit a unique semi-global solution. For
" 2 Rnf0g and initial condition x.0/ D x0 > 0, the solution is given explicitly for
all t ! 0 by u.t/ D u".x0/C "t and x.t/ D u!1

" .u.t//. As before, the equations (35)
provide the correct framework into which we can introduce noise with the desired
outcome.

Combining (27) and (28) gives the intertwining relation

H"K" D
#1
2
@2u " "@u

$
K" (37)
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where K" D e"uK, H" D H " "2=2, and

H D 1

2
@2x " )2!.!C 1/

2 sinh2 )x
: (38)

As before, it follows, using (37) and the Leibnitz rule, that

 ".x/ D
Z x

!x
K".x; u/du

is an eigenfunction of H with eigenvalue "2=2. Indeed, if ! > 1, then K", @xK" and
@uK" vanish for u D ˙x and the claim is immediate. If ! D 1, then

@xK".x; x/ D
)

2
e"x; @xK".x;"x/ D )

2
e!"x;

@uK".x; x/ D " )
2
e"x; @uK".x;"x/ D )

2
e!"x

and

K".x; x/ D K".x;"x/ D 0:

By the Leibnitz rule,

@x " D
Z x

!x
@xK"duC K".x; x/C K".x;"x/ D

Z x

!x
@xK"du;

and so

@2x " D
Z x

!x
@2xK"duC @xK".x; x/C @xK".x;"x/

D
Z x

!x
@2xK"duC

)

2
.e"x C e!"x/:

It follows, using (22), that

H" " D
Z x

!x
H"K"duC

)

4
.e"x C e!"x/

D
Z x

!x

#1
2
@2u " "@u

$
K"duC

)

4
.e"x C e!"x/

D
#1
2
@u " "/K"

ˇ̌
ˇ
uDx

uD!x
C )

4
.e"x C e!"x/ D 0;

as required.
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For example, when ! D 1,

 ".x/ D
)

)2 " "2

h )
"
coth )x sinh"x " cosh"x

i
:

In particular,  0.x/ D x coth )x " 1=).
Continuing as before, this kernel function leads to a hyperbolic version of

Theorem 2, valid for any " 2 R.

5 Hyperbolic Calogero-Moser System II

There is another choice of kernel functionwhich leads to a very different ‘version’ of
Theorem 2, valid only for a restricted range of ". It is based on the kernel functions
considered in [9, 10] and, in the rational case, reduces to the example discussed in
the introduction.

Let D D .0;1/ & R and consider the kernel function

K.x; u/ D
'
tanh

!
)
xC u
2

"
C tanh

)
)
x " u
2

*(!
; .x; u/ 2 D:

Note that we can also write

K.x; u/ D
'

sinh )x
cosh.).xC u/=2/ cosh.).x " u/=2/

(!
:

Now,

.@x lnK/2 " .@u lnK/2 D
)2!2

sinh2 )x
(39)

and

@2x lnK " @2u lnK D " )2!

sinh2 )x
: (40)

The corresponding Bäcklund transformation

Pu D "@u lnK; Px D @x lnK (41)

has the property that, if (41) holds, then x satisfies the equations of motion of the
hyperbolic Calogero-Moser system with Hamiltonian (30) and Pu D " is a conserved
quantity for the coupled system, as can be seen by differentiating (39) with respect
to x and u, respectively. It also follows from (39) and (41) that " is an eigenvalue of
the Lax matrix (33).
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Now the equation Pu D " is equivalent to the critical point equation @u lnK" D 0,
where K" D e"uK. Using this equation, namely

tanh
!
)
xC u
2

"
" tanh

)
)
x " u
2

*
D 2"

)!
; (42)

we can rewrite the evolution equation (29) as

Pu D "; Px D "C b.x; u/ D .@x C @u/ lnK"; (43)

where

b.x; u/ D .@x C @u/ lnK D !)

'
coth )x " tanh

!
)
xC u
2

"(
:

In this setting, the critical point equation (42) only has a solution u".x/ 2 R if
j"j < !), in which case it is unique. We note that u0.x/ D 0 for all x > 0
and u".x/ ! ˙1 when " ! ˙!). The relation (42) is stable under the new
evolution equations (43), and is now required to be in force in order to guarantee that
.x; p/ evolves according to the hyperbolic Calogero-Moser flow on the iso-spectral
manifold corresponding to ".

When " D 0, we must have u.t/ D 0 for all t ! 0 and the equation for x
simplifies to Px D )!= sinh )x, as in the previous example, which admits a unique
solution for any initial condition x.0/ D x0 > 0, defined for all t ! 0 by (36).

For " > 0, the function u" is a bijection from .0;1/ to .0;1/, with inverse

u!1
" .u/ D

2

)
cosh!1

r
)!

2"
sinh )u " sinh2

)u
2
:

Note that the constraint " < )! ensures that the quantity in the square root is
positive. For " < 0, u" is a bijection from .0;1/ to ."1; 0/, with inverse given by
the same formula. It follows that, given any " 2 R, the evolution equations (43) are
well-posed on the corresponding iso-spectral manifold (defined in these coordinates
by the relation (42)) in the sense that they admit a unique semi-global solution. For
" 2 Rnf0g and initial condition x.0/ D x0 > 0, the solution is given for all t ! 0
by u.t/ D u".x0/C"t and x.t/ D u!1

" .u.t//. As before, the evolution equations (43)
provide the correct framework into which we can introduce noise with the desired
outcome.

Now let

H D 1

2
@2x " )2!.!" 1/

2 sinh2 )x
;

and write H" D H " "2=2. Note that this Hamiltonian has a different coupling
constant to the one in (38), reflecting the difference between (40) and (28).
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Combining (39) and (40) gives the intertwining relation

H"K" D
#1
2
@2u " "@u

$
K" (44)

and it follows, using the Leibnitz rule, that for jRe "j < )!,

 ".x/ D
Z 1

!1
K".x; u/du

is an eigenfunction of H with eigenvalue "2=2.
As noted in [10, Eq. (4.16)], the eigenfunction  " is related to the associated

Legendre function of the first kind by

 ".x/ D
22!C3=2p
()

.sinh )x/1=2
+ .!C "=)/+ .! " "=)/

+ .!/
P
1
2

!!
"
)

! 1
2

.cosh )x/: (45)

We note also that  ".x/ D  !".x/, as can be seen, for example, from the functional
equation Pa

!b.z/ D Pa
b!1.z/, and

 0.x/ D
2
p
(+ .!/

)+ .!C 1=2/
.sinh )x/!:

These are not the same eigenfunctions which were obtained in the previous
section, even taking account of the different coupling constants. For example, taking
! D 2 here gives 0.x/ D 8.sinh )x/2=3), which is different from the eigenfunction
 0.x/ D x coth )x " 1=) of the previous section with ! D 1; both are positive on
.0;1/, vanish at zero, and satisfy

 00
0 " )2

sinh2 )x
 0 D 0;

but they are not equal. On the other hand, they agree (up to a constant factor) in the
limit as ) ! 0, which corresponds to the rational case.

Consider the integral operator defined, for suitable f W D ! R, by

QK"f .x/ D
Z 1

!1
K".x; u/f .x; u/du;

and the differential operator, defined on D.A"/ D C2c.D/, by

A" D
1

2
@2x C

1

2
@2u C @x@u C "@u C ."C b.x; u// @x:
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Proposition 3 For jRe "j < )! and f 2 D.A"/,

H" QK"f D QK"A"f : (46)

Proof This follows from (44), as in the proof of Proposition 1. ut
Now, let B be a standard one-dimensional Brownian motion and consider the

coupled stochastic differential equations obtained by adding white noise to " in (7),
that is

dU D dBC "dt; dX D dU C b.X;U/dt: (47)

Lemma 2 Suppose " 2 R with j"j < )! and ! ! 1=2. For any initial condition
# 2 P.D/, the stochastic differential equation (47) has a unique strong solution
with continuous sample paths in D. It is a diffusion process in D with infinitesimal
generator A" and the martingale problem for .A"; #/ is well-posed.

Proof The function .x; u/ 7! ."C b.x; u/; "/ is uniformly Lipschitz and bounded
on Dı D f.x; u/ 2 D W x > ıg for any ı > 0, so by standard arguments, for
any fixed initial condition .x; u/ 2 D, the SDE (47) has a unique strong solution
with continuous sample paths up until the first exit time * from the domain D. We
are therefore required to show that * D C1 almost surely or equivalently, that Xt

almost surely never vanishes. We show this by a comparison argument, using the
fact that on D we have

b.x; u/ > !).coth )x " 1/:

Now,

dX D dU C b.X;U/dt;

and it is straightforward to see that the one-dimensional SDE

dR D dU C !).coth.)R/ " 1/dt

has a unique strong solution with continuous sample paths in .0;1/ for any R0 D
r > 0; since! ! 1=2, by the usual boundary classification 0 is an entrance boundary
for this diffusion. Thus, if .X0;U0/ D .x; u/ 2 D and R0 D x " u, then Xt ! Rt > 0
almost surely for all t ! 0, as required, proving the first claim. The second claim
follows. ut

Combining this with the intertwining relation (46), we obtain:

Theorem 3 Suppose " 2 R with j"j < )! and ! > 1=2. Let $ 2 P..0;1// and
# D $.dx/#x.du/ 2 P.D/, where #x.du/ D  ".x/!1K".x; u/du. Let .X;U/ be a
diffusion process in D with initial condition # and infinitesimal generator A". Then
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X is a diffusion process in .0;1/ with infinitesimal generator

L" D  ".x/!1H" ".x/ D
1

2
@2x C @x ln ".x/ # @x:

Moreover, for each t ! 0 and g 2 B.R/,

EŒg.Ut/j Xs; 0 $ s $ t% D
Z 1

!1
g.u/#Xt.du/;

almost surely.

Proof This follows from the intertwining relation (44) using Theorem 4. As before,
we identify D with R2 via the one-to-one mapping .x; u/ 7! .ln x; u/ and thus
regard D, equipped with the metric induced from the Euclidean metric on R2, as
a complete, separable, locally compact metric space. Similarly, we identify .0;1/
with R via the one-to-one mapping x 7! ln x and regard .0;1/, equipped with the
metric induced from the Euclidean metric on R, as a complete, separable metric
space.

The map & W D ! .0;1/ defined by &.x; u/ D x is continuous and the Markov
transition kernel' from .0;1/ to D defined by

'f .x/ D
Z 1

!1
#x.du/f .x; u/; f 2 B.D/

satisfies '.g ı &/ D g for g 2 B..0;1//. Moreover, by (46),

L"'f D 'A"f ; f 2 D.A"/: (48)

Now, D.A"/ D C2c .D/ is closed under multiplication, separates points and is
convergence determining. Thus, all that remains to be shown is that the martingale
problem for .L"; $/, for some D.L"/ % '.D.A"//, is well-posed.

By (45) and the relation

.z2 " 1/
d
dz
Pa
b.z/ D bzPa

b.z/ " .aC b/Pa
b!1.z/;

the drift b".x/ D @x ln ".x/ is given by

b".x/ D " coth )xC )! " "
sinh )x

"
P
1
2

!!
"
)

! 3
2

.cosh )x/
.
P
1
2

!!
"
)

! 1
2

.cosh )x/

#
:

As x ! 0C,

P
1
2

!!
"
)

! 3
2

.cosh )x/
.
P
1
2

!!
"
)

! 1
2

.cosh )x/! 1:

Now ! > 1=2, so this implies that b".x/ > 1=2x for x sufficiently small,
which classifies 0 as an entrance boundary. On the other hand, as x ! C1,
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the second term vanishes and b".x/ ! ", which shows that C1 is a natural
boundary. The relevant asymptotics can be found, for example, in [19, §14.8.7,
§14.8(iii)]. Thus, as b" is locally Lipschitz, the martingale problem for .L"; $/
with D.L"/ D C2c..0;1// is well-posed. By Itô’s lemma and the intertwining
relation (25), it follows that the martingale problem for .L"; $/ with D.L"/ D
'.D.A"//[ C2c..0;1// is also well-posed, as required. ut

To summarise, for any given value of the constant of motion " D Pu 2 R with
j"j $ !), the classical flow in D evolves according to the evolution equations

Pu D "; Px D PuC b.x; u/:

If we add noise to the constant of motion ", then the evolution is described by the
stochastic Bäcklund transformation

dU D dBC "dt; dX D dU C b.X;U/dt

and, for appropriate (random) initial conditions, U evolves as a Brownian motion
with drift " and X evolves as a diffusion process in .0;1/ with infinitesimal
generator L".

As in the previous examples, we can let !! 1 to study the semi-classical limit
and the result is analogous. As before, if ! D 1 and j"j < ), and u".x/ denotes the
unique solution to the critical point equation @u lnK" D 0, then

@x ŒlnK".x; u".x//% D Œ@x lnK"% .x; u".x//:

It is natural to ask what happens to the statement of Theorem 3 when " ! !).
In this limit, b".x/! !) coth )x and

+ .! " "=)/!1 ".x/!
2!C2+ .2!/p

()+ .!/+ .!C 1=2/
.sinh )x/! DW Q !).x/:

Furthermore, since u".x/ ! C1, it is easy to see that the measure #x concentrates
atC1. Now,when "! !) and u ! C1, "Cb.x; u/! !) coth )x. The Bäcklund
transformation simplifies: if

Px D !) coth )x

then x evolves according to the hyperbolic Calogero-Moser flow with the constant
to motion " D !). The statement of Theorem 3 carries over trivially: if X evolves
according to the SDE

dX D dBC !) coth.)X/dt
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then X is a diffusion process on .0;1/ with infinitesimal generator

L!) D Q !).x/!1H!) Q !).x/ D
1

2
@2x C !) coth )x # @x:

Similar remarks apply when " ! "!), and in fact the limiting statements are the
same. When ) ! 0, this reduces to the example discussed in the introduction, and
now we can see from the fundamental restriction j"j < )! that in fact we can only
hope for the above structure to remain intact in this limit when " D 0, as indeed
it does with the evolution of the x-coordinate in (43) becoming autonomous and
reducing to Px D !=x, and the analogue of Theorem 3 carrying over trivially.

6 The KPZ Equation and Semi-infinite Toda Chain

As remarked in the introduction, most of the above constructions extend naturally
to higher rank systems. For the n-particle Toda chain, this has been developed
in the papers [21, 22]. The construction given in [21] is related to the geometric
RSK correspondence. In [23] it was extended to a semi-infinite setting and related
to the Kardar-Parisi-Zhang (or stochastic heat) equation. In this context it can
be represented formally as a semi-infinite system of coupled stochastic partial
differential equations, the first of which is the stochastic heat equation. In the
language of the present paper, the construction given in [23] is a stochastic Bäcklund
transformation and should be related (in a way that has yet to be fully understood)
to a semi-infinite version of the quantum Toda chain. See also [4, 18] for further
related work in this direction.

With this picture in mind, it is natural to expect the construction given in [23],
without noise, to be related to the semi-infinite classical Toda chain. This is indeed
the case, as we will now explain directly. The conclusion is that the fixed-time
solution to the KPZ equation, with ‘narrow wedge’ initial condition, can be viewed
as the trajectory of the first particle in a stochastic perturbation of a particular
solution to the semi-infinite Toda chain.

The stochastic heat equation can be written formally as

ut D
1

2
uxx C ,u

where ,.t; x/ is space-time white noise. It is related to the KPZ equation

ht D
1

2
hxx C

1

2
.hx/2 C ,

via the Cole-Hopf transformation h D log u. The extension given in [23] starts
with a solution u.t; x; y/ to the stochastic heat equation with delta initial condition
u.0; x; y/ D ı.x " y/ and defines a sequence of ‘*-functions’ *n which can be
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expressed formally as the bi-Wronskians

*n D detŒ@i!1x @j!1y u%i;jD1;:::;n:

Their evolution can be described, again formally, by the coupled equations

@tan D
1

2
@2xan C @xŒan@xhn%

where an D *n!1*nC1=*2n and hn D log.*n=*n!1/ with the convention *0 D 1.
Moreover, formally it can be seen that the *n are *-functions for the 2d Toda chain,
that is, .ln *n/xy D an.

If we switch off the noise by setting , D 0, then u is given by the heat kernel

u.t; x; y/ D 1p
2(t

e!.x!y/2=2t

and

*n D t!n.n!1/=2

0

@
n!1Y

jD1
jŠ

1

A un:

Note that an D *n!1*nC1=*2n D n=t and

hnC1 D ".x " y/2=2t " ln
%p
2(t

tn

nŠ

&
:

These *n satisfy the 2d Toda equations .ln *n/xy D an as before, but now it also holds
that .ln *n/xx D "an or, equivalently,

.hn/xx D ehn!hn!1 " ehnC1!hn

(with h0 ' C1) which are the equations of motion of the semi-infinite Toda chain.

Acknowledgements Thanks to Simon Ruijsenaars for valuable discussions and comments on
an earlier draft, and Mark Adler and Tom Kurtz for helpful correspondence. Thanks also to the
anonymous referee for helpful comments and suggestions.

Appendix

The theory of Markov functions is concerned with the question: when does a
function of a Markov process inherit the Markov property? The simplest case is
when there is symmetry in the problem, for example, the norm of Brownian motion
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in Rn has the Markov property, for any initial condition, because the heat kernel
in Rn is invariant under rotations. A more general formulation of this idea is the
well-knownDynkin criterion [5]. There is another, more subtle, criterion which has
been proved at various levels of generality by, for example, Kemeny and Snell [13],
Rogers and Pitman [26] and Kurtz [14]. It can be interpreted as a time-reversal of
Dynkin’s criterion [12] and provides sufficient conditions for a function of a Markov
process to have the Markov property, but only for very particular initial conditions.
For our purposes, the martingale problem formulation of Kurtz [14] is best suited,
as it is quite flexible and formulated in terms of infinitesimal generators.

Let E be a complete, separable metric space. Let A W D.A/ ( B.E/ ! B.E/
and # 2 P.E/. A progressively measurable E-valued process X D .Xt; t ! 0/ is a
solution to the martingale problem for .A; #/ if X0 is distributed according to # and
there exists a filtrationFt such that

f .Xt/"
Z t

0

Af .Xs/ds

is a Ft-martingale, for all f 2 D.A/. The martingale problem for .A; #/ is well-
posed is there exists a solution X which is unique in the sense that any two solutions
have the same finite-dimensional distributions.

The following is a special case of Corollary 3.5 (see also Theorems 2.6, 2.9 and
the remark at the top of page 5) in the paper [14].

Theorem 4 (Kurtz [14]) Assume that E is locally compact, that A W D.A/ (
Cb.E/ ! Cb.E/, and that D.A/ is closed under multiplication, separates points
and is convergence determining. Let F be another complete, separable metric space,
& W E ! F continuous and '.y; dx/ a Markov transition kernel from F to E such
that '.g ı &/ D g for all g 2 B.F/, where 'f .x/ D

R
E f .x/'.y; dx/ for f 2 B.E/.

Let B W D.B/ ( B.F/! B.F/, where '.D.A// ( D.B/, and suppose

B'f D 'Af ; f 2 D.A/:

Let ! 2 P.F/ and set # D
R
F !.dy/'.y; dx/ 2 P.E/. Suppose that the martingale

problems for .A; #/ and .B;!/ are well-posed, and that X is a solution to the
martingale problem for .A; #/. Then Y D & ı X is a Markov process and a solution
to the martingale problem for .B;!/. Furthermore, for each t ! 0 and g 2 B.F/ we
have, almost surely,

EŒg.Xt/j Ys; 0 $ s $ t% D
Z

E
g.x/'.Yt; dx/:

We remark that, under the hypotheses of the above theorem, X is a Markov process
and the forward equation

#tf D #f C
Z t

0

#sAfds; f 2 D.A/
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has a unique continuous solution in P.D/; also the assumption of uniqueness for
the martingale problem for .B;!/ is not necessary, as it is implied by the other
hypotheses; we refer the reader to [14] for more details.
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