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Abstract 
We obtain a weak approximation for the reduced family tree in a near-critical 

Markov branching process when the time interval considered is long; we also extend 
Yaglom's theorem and the exponential law to this case. These results are then 
applied to the problem of estimating the age of our most recent common female 
ancestor, using mitochondria1 DNA sequences taken from a sample of contemporary 
humans. 
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1. Introduction 

Let Z be a Markov branching process with mean lifetime 1 and offspring 
distribution v. Let 6 be a realisation of v and set f ( s )= Es5, for 0 S s S 1. Fix t >0, 
and for each 0 I s  I t, define Nl(s) to be the number of individuals alive at time s 
with descendants alive at time t. The process N, is called the reduced branching 
process, and can be thought of as the family tree relating the individuals alive at 
time t. It is also referred to as the reduced family tree. Note that N, is also a Markov 
process. 

Suppose E t  = 1+ alt. In Section 2 we will show that when t is large and the time 
units are taken as t generations, the reduced process can be approximated by a 
linear pure birth process {N(r) ,  0 5  r <1) with jump rate b(a,  r)N(r)  at time r, 
where 

This generalises a result due to Fleischman and Siegmund-Schultze [Ill and Durrett 
[S], which dealt specifically with the critical case, a = 0. 

In the supercritical case, when the process is not 'close' to critical, individuals are 
typically distantly related. For example, it follows from results of Biihler [2], Zubkov 
[44] and Durrett [S], that if 0 1  Dl I t denotes the time of death of the most recent 
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419 The genealogy of branching processes 

common ancestor of two randomly chosen individuals alive at time t, and E[ >1, 
then (D,lt I Z(t) >0) +0 in probability as t +m. We will see later that this fact can 
be extrapolated (in some sense) from our result by letting a -+ a. 

In the subcritical case (E[ < 1) individuals typically have very recent ancestors: in 
this case, (D,/t I Z ( t )>0)- 1 in probability (see, for example, [ 5 ] , [44]). Again this 
can be seen from our result by letting a +  - x .  

Essentially what we are doing here is describing the continuum of possibilities in 
between, which arise when the process is close to critical. 

We will also introduce analogues of Yaglom's theorem and the exponential limit 
law for near-critical branching processes. These are well-known facts about critical 
branching processes and can be summarised as follows. If Z is a critical Markov 
branching process with mean lifetime 1and offspring variance u2>0, then as t-, co, 

writing P1for the law of the process started with one individual, 

and 

for h >0. 
In Section 3 we will apply our results to the problem of estimating the age of our 

most recent common ancestor, more affectionately known these days as 'Eve'. 
(Assuming of course such an ancestor exists! Note the common ancestor of all 
humans need not be a human: it could be more like a chimpanzee, or even a fish. To 
question the existence of such an ancestor is simply beyond the scope of this paper. 
We remark however that, although nothing is certain, it would be remarkable and 
peculiar to the accepted theory of evolution if we did not have a common ancestor. 
A simple alternative would lead one logically to one of two possibilities: either 
humans and chimpanzees are not related at all; or there exist two humans and a 
chimpanzee such that the first human shares a common ancestor with the 
chimpanzee, but not with the other human. The latter possibility is considered 
implausible, and so repeating the argument we are reduced to the conclusion that no 
two species are related, contrary to the theory of evolution.) If T denotes the age of 
Eve and we model the female population as a Markov branching process with 
offspring mean 1+ a l T  ( a  E R), then we can simultaneously estimate a and T using 
mitochondrial DNA data from a sample of contemporary human beings; assuming 
that the evolution of mitochondrial DNA is neutral, its inheritance is maternal, and 
that the mutation rate is constant and known. Most of the molecular studies so far 
(see, for example, [13], [35], [40], [41], [43]) have argued for a recent African genesis 
(as recent as 200000 years ago), a theory that some paleontologists feel to be 
inconsistent with the fossil evidence (see, for example, [39]). The molecular evidence 
is generally presented in the form of a reconstructed tree relating a collection of 
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aligned mitochondria1 DNA sequences, taken from a sample of contemporary 
humans, from which conclusions are drawn. We will argue that it is not necessary to 
construct a tree in order to make inferential statements about the age of Eve, and in 
Section 3.2 present an alternative approach, where the genealogy is modelled via a 
branching process. Similar arguments about Eve, also avoiding tree constructions, 
can be found in [19] and [17]. In Section 3.3 we evaluate the performance of our 
estimators, and finally, in Section 3.4, apply our methods to some data. 

We conclude the paper with suggestions for further research in this area, in 
particular those motivated by the Eve problem. For example, it would be desirable 
to have a branching process analogue of Ewen's sampling formula. This is a formula 
giving the joint distribution of the numbers of distinct genetic types in a finite sample 
taken from a population that has been evolving according to the infinite-alleles 
Wright-Fisher model with neutral mutations. Such a formula would perhaps allow 
one to simultaneously estimate a ,  T and the mutation rate from the data; although it 
is open to question whether there is sufficient information contained in the data to 
do this effectively. Some progress in this direction has been made by Taib [36]. 

2. Main results 

For each t 2 0, let Z,(s) be a Markov branching process with mean lifetime 1 and 
offspring distribution 5,) with E5, = 1+ alt + o(1lt) and var (6,)= u2+ o(1lt) < m, 
where a E R\{O). (We assume a # 0 for notational convenience only-the corres-
ponding results for the critical case can be extrapolated by letting a+ 0.) We will be 
considering the genealogy of this process for fixed a and large t: for this reason we 
refer to it as the near-critical case. A good general reference on near-critical 
branching processes is the book of Jagers [18], pp. 63-70, 199-206. We denote by 
P" =P: the law of the process Z, started at x ,  suppressing the subscript for 
notational convenience, and write Ex for the corresponding expectations. Set 
J(s) = E'S~~('). It is important to note (see, for example, [12]) that the embedded 
(discrete-time) process {Z,(n), n E Z,) is a Galton-Watson process with offspring 
mean 1 + cult + o(llt) ,  variance a2+ o(l l t ) ,  and generating function f,(s). For r > 0, 
set p , , ,= P"(Z,(rt) > 0). We will assume throughout this section that 
(Z:(1) I Z,(O) = 1) is uniformly integrable in t. 

Our first result describes the rate at which p,,,,+ 0 when t + x ,  and our second is 
an 'exponential limit law' for near-critical Markov branching processes. We combine 
them in one theorem. The corresponding well-known results for critical processes 
(see, for example, [I], pp. 19-20) can be extrapolated by letting a+ 0. 

Theorem 2.1 
(i) As t+  m, px,r,l -a j l t ,  where 
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(ii) If Z,(O)lt +0 as t +m, then for A >0, x E Z+\{O}, 

where b, = e-"'a,. The limit law is exponential with parameter b,. 
Proof. By a well-known theorem of Feller [9], Jii'ina [20], and Lindvall [23], the 

process {t-lZ,([rt]), rZO} converges in law, as t + x ,  to a diffusion W with 
generator 

d2  d 
tu2x-+ ax-

dx2 dx '  
provided Z,(O)lt +W!O). Denote by Rw the law of the process W started at w. Thus, 
since Z, is branching, 

Px,,,= 1-P"(Zt(rt) = 0) 
= 1-P(Z,(rt) = 0)"" 
-1- R1(W(r)= O)X'r. 

Now suppose (X, Qx) is a BESQO (x) process; that is, a diffusion on R+ with 
generator 2xd2/dx2, started at x. Using the space-time transformation of Pitman and 
Yor [30], Example 6.1, the Rw-law of the process W is the same as the ~ ~ " ' ~ - 1 a w  of 
the process 

Thus (see, for example, [21], p. loo), 

= exp {-a,}, 
and (i) follows. 

To prove (ii), we apply the diffusion approximation and space-time transformation 
once more: 

Exexp {- hZ,(rt)lt} = [E' exp {- hZ,(rt)/t)]"" 
= [R' exp {-A W(r)}]"" 

x ha, 
= exP [-;=I. 

Combining this with (i) we see that as t -+ x ,  
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which we recognise as the Laplace transform of an exponential distribution with 
parameter b,. This completes the proof of the theorem. 

For each t and 0 S s < t, define (the reduced process) N,(s) to be the number of 
individuals alive at time s (in the process 2,) having descendants alive at time t. Note 
that for each t, N, is a time-inhomogeneous Markov branching process. Our main 
result is the following. In the statement of the theorem, Dz+[O, 1) denotes the space 
of cadlag paths in Z,, parametrised by the unit interval; the reader should note that 
weak convergence in this case requires only convergence of finite-dimensional 
distributions. 

Theorem 2.2. As t -+ m, the sequence of processes {N,(rt), 0 S r < 1) converges in 
distribution in DZTIO, 1) to a linear pure birth process {N(r), 0 5 r < 1) with jump rate 
b(a, r)N(r) at time r, where 

provided N,(O) + N(0). 

Proof: By Theorem 2.1, as t + m, 

Applying Theorem 2.1 again we see that as t + m, 

for any x E Z+\{O), where G, is the Laplace transform of the exponential 
distribution with rate b,, and G: denotes the kth derivative of G,. It is easy to check 
that for k h 1, 

pr(k) = qr( l -  qr)k-l, 



The genealogy of branching processes 

where 

This shows that for each 0 5 r < 1, (N,(rt) I N,(O) = 1)  converges in distribution to a 
random variable N1(r) with P(N1 ( r )  = k ) =pr(k) .  (The random variable N 1 ( r )- 1 
has a geometric distribution with success probability q,.) It follows from scaling that 
for 0 5 rl < r2< 1, 

Therefore, since (N,(r2,t)I Nr(rlt)= k )  is just the sum of k independent copies of 

it must converge in distribution to the sum of k independent copies of N1[(r2-
r l ) l ( l- rl)].  This shows that the finite-dimensional distributions of the process 
{N,(rt), 0 S r < 1) converge. Since each sample path is monotone increasing and for 
each r, the collection {Nr(rt),t  2 0 )  is tight, it follows that {N,(rt), 0 5 r < 1)  
converges weakly in Dz+[O, 1 )  to a Markov process {N( r ) ,  0 S r < 1), whose 
transition probabilities are determined by 

where for each r, Ni (r )  are independent and identically distributed with 

For k 2 3, it can be easily checked that r- lpr(k)+0 as r -+ 0, so the limit process N 
almost surely has no jumps of size 2 2. Since N must inherit the branching property, 
it follows that N is a linear pure birth process with jump rate b ( a ,  r )N( r )  at time r, 
where 

b(a ,  r )  = lim h- 'P(N(r + h ) = 2 / N ( r )= 1 )  
h+O 

as required. 

Remark. An alternative description of the limiting process in Theorem 2.2 is via 
the following construction. Let r) be a random.variable taking values in [0, 1 )  with 
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The process evolves as follows. Start with N(0) individuals. Each individual alive at 
time O S  r < 1 lives for a time equal in distribution to (1 - r)q and is then replaced 
by two individuals. (Individuals live and die independently of one another.) Let N(r) 
be the number of individuals alive at time r. 

This reveals a kind of stickbreaking structure. In particular, consider the 
sequences of branch times along a single line of descent (T , ,  T,, T3, .). If {qi} is a 
collection of independent copies of q, then the sequence 

has the same law as (T , ,  T,, T3, .). The sequence (6) is an example of a 
stickbreaking scheme. Stickbreaking schemes arise naturally in a variety of settings, 
and have in recent times become a topic of much interest. For example, Pitman and 
Yor [31] and Perman et al. [27] have classified schemes that arise when the 
inter-jump times of a stable subordinator on the unit interval are sampled without 
replacement, with a bias according to their size (this is called size-biased sampling). 
Similar schemes can be used to approximate the distribution of the respective 
proportions of distinct alleles in a large population, ordered according to the ages of 
the alleles, when the population evolves according to the infinite-alleles Wright- 
Fisher model for neutral evolution (see, for example, [4], [15] and references 
therein). 

Theorem 2.2 can be applied to help answer various genealogical questions. For 
example, the next result describes the degree of relationship of two randomly chosen 
individuals at time t. Let D, be the time of death of the most recent common 
ancestor of the two individuals (we adopt the convention D, = 0 if they have no 
common ancestor). 

Theorem 2.3. For O S  r < 1, x E Z+\{O}, 

29:lim P(D, > rt I N,(O) =x ) = ---{-(I - qr)-x - F(x - 1, 1- qr)}, 
,-+a  (x - I)! 

where 

and F :Z+x (0, I )  +R is defined by 

Proof We imitate the proof of the corresponding result in [5]for the critical case. 
Let Pt,s,kdenote the probability that two individuals chosen randomly at time t have 
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the same ancestor at time s, given N,(s) = k. Let Xl(s, t), ,Xk(s, t) be indepen- 
dent and identically distributed random variables with the same distribution as 
(Z,(s) I Z,(s) > 0). If we let 

then 

By Theorem 2.l(ii), for each i and 0 5 r < 1, Xi(rt, t) converges in distribution, as 
t - t  m, to an exponentially distributed random variable with mean b;', which we 
denote by Xi(r). So by bounded convergence we have 

as t +m, where 
Sk(r)= Xl(r) + . . + Xk(r). 

But the random variable kXl(r)lSk(r) has (by definition) an F-distribution with 1 
and k degrees of freedom (this does not depend on the value of EXl(r)). In 
particular, 

2k 
E[kXl (r) (r)12= -.k + l  

Combining this with Theorem 2.2 we have as t +m, 

and the result follows. 

Remarks. 1. The limiting process in Theorem 2.2 can be represented as a 
deterministic time change of a (time-homogeneous) Yule process. If {Y(t), t 2 0) is a 
Yule process with branching rate 1,then the process 

has the same law as N. 
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2. The corresponding results for the critical case [5], [ l l ]  can be extrapolated 
from Theorems 2.2 and 2.3 by letting a +0. In this case the jump rate of the limiting 
pure linear birth process is N(r)l(l  - r) at time 0 S r <1, and the stickbreaking 
distribution 77 is uniform on [O,l). 

3. For 8 >0, the process {N,(rt), 0 5 r < 8) converges weakly in Dz+[O, 8)  to an 
inhomogeneous Yule process {Ne(r), 0 5  r < 8) with branching rate b(ae, re-') 
Ne(r) at time r. This follows from Theorem 2.2 by scaling. If a >0, then as 8+ m, 
this limit becomes a Yule process, consistent with our earlier result [25] for the 
skeleton of a branching process (where essentially we let 8 +  m before taking the 
diffusion limit as t+  m ;  here the limits are reversed). 

4. In the 'strictly' supercritical case, where Et, =m >1 for all t, individuals are 
distantly related in the following sense: if D, is defined as in Theorem 2.3, then 
(D,lt I Z,(t) >0) +0 in probability, as t +m (see, for example, [2], [5]). This fact can 
be extrapolated from Theorem 2.3, by letting a ++a. Intuitively, we can also see 
this from Theorem 2.2, noting that the stickbreaking distribution 77 converges to a 
point mass at zero as a ++a. 

In the strictly subcritical case, where Et, = rn <1 for all t, individuals typically 
have very recent common ancestors: in this case (D,lt I Z,(t) >0)+ 1 in probability, 
as t+ m (see, for example, [44]). This can also be extrapolated from Theorem 2.3, 
by letting a +-m. 

5. Similar and related results for general branching processes can be found in [32], 
[36], [44], for branching diffusion processes in [5], [33], and for superprocesses in [3], 
[6]. For an excellent review of the vast literature on genealogical processes in 
population genetics models, see [38]. 

6. Theorem 2.1 actually holds more generally for Bellman-Harris (age-
dependent) branching processes (with mean lifetime 1 and bounded third offspring 
moment). This can be seen in the proof: it relies on the Feller branching diffusion 
approximation, and this was extended to the age-dependent case by Jagers [16]. 
Presumably, Theorems 2.2 and 2.3 can also be generalised to include the 
age-dependent case. 

3. Application to rntEve 

In recent times there has been much interest and controversy regarding the age 
and whereabouts of our most recent common female ancestor, Eve. Wilson and 
Cann [43] and Vigilant et al. [40], [41] claim that she probably lived in Africa about 
200000 years ago; Hasegawa and Horai [13] estimate the age to be 280000 years. 
More recently, Stoneking et al. [35] published an estimate of 135 000 years. These 
estimates are based on mtDNA (mitochondria1 DNA) data collected from contem- 
porary humans. On the other hand, a number of paleontologists (see, for example, 
[39]) consider this theory to be inconsistent with the fossil evidence; they claim that 
if indeed we do have a common ancestor, then she must have walked the Earth at 
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least a million years ago. Popular accounts of the Eve controversy can be found in 
[39], [43] and [22]. 

We will only concern ourselves here with the age, not the whereabouts, of Eve. 

3.1. The molecular evidence for a recent African genesis. We will explain here 
briefly how the argument for a recent African genesis is presented in [40]. The 
methods used in [13], [35], [41], [43] are similar. 

The data used is a collection of aligned nucleotide sequences, each approximately 
600 base pairs (sites) in length, sampled from the hypervariable segment in the 
control region of the human mitochondria1 genome, of 189 individuals from around 
the world. There are four nucleotides: adenine, thymine, guanine and cytosine. A 
typical sequence might be coded as follows: 

TTCTTTCCATG GGGAAGCAGA . . . CCTAACCAGA. 

It is assumed that these sequences are maternally inherited. This is more or less the 
case in reality, since the mitochondria are located in the cytoplasm of the cell (as 
opposed to the nucleus) and the sperm contributes very little cytoplasm to the 
fertilised egg. In fact, it has been shown experimentally that the number of 
mitochondria in the egg is of the order of 1 6 ,  whereas the sperm contains only 
about 50 mitochondria. It is also assumed that mtDNA is neutral from the 
standpoint of natural selection. In other words, the specific makeup of your mtDNA 
does not influence your reproductive tendencies. The general feeling is that there 
are certain sequence patterns that are fatal, and these can be ignored since they 
disappear at once from the gene pool; but apart from that, neutrality is a reasonable 
assumption. 

A substitution is said to occur if one of the nucleotides in the sequence is replaced 
by another, and the new sequence is inherited. According to the molecular clock 
hypothesis substitutions occur randomly along lineages at a constant rate, and rates 
along different lineages are the same. The genetic distance, or divergence, between 
two such sequences is defined to be the proportion of sites at which the sequences 
differ. Among humans this is typically less than 5% in the control region of mtDNA. 
Vigilant et al. [40] found the average divergence between the humans in their 
sample, and a sample chimpanzee, to be about 15%. 

Given the data, a phylogenetic tree relating the individuals in the sample is 
constructed, either by maximum likelihood [13] or by parsimony [35], [40], [41], 
[43]; and rooted using the chimpanzee as an outgroup. Maximum likelihood is not 
possible with samples as large as the one of Vigilant et al. [40]. 

The parsimony method is essentially an algorithm designed to minimise the total 
number of mutations on the constructed tree. Once the tree relating the sampled 
individuals is constructed, it is rooted at the point that is closest in genetic distance 
to the outgroup, which in this case is a common chimpanzee. We would like to 
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point out that there are several arguments for, and against, the use of parsimony; the 
same is true for the outgroup method. It seems that the former is best suited to the 
case where a small, genetically homogeneous sample is considered, in which case the 
resulting tree is often quite similar to that obtained by maximum likelihood. The 
advantage of parsimony over maximum likelihood is its relative computability. 
Otherwise, it need not be (see, for example, [lo]) very reliable. The outgroup 
method is best suited to the case where the outgroup is relatively close, in genetic 
distance, to the sample. 

The mutation rate is then estimated by comparing human and chimpanzee 
mtDNA: apparently human-chimpanzee divergence occurred about 4 to 6 million 
years ago [14], although there are estimates suggesting that the divergence occurred 
as far back as 9 million years ago [34]. As we remarked earlier, the average 
divergence between the humans in the sample of [40] and the chimpanzee was 
observed to be 15.1%. However, as this is over a considerable amount of time, there 
is the possibility of multiple substitutions at some sites, in which case the number of 
observed differences is an underestimate for the number of substitutions that 
actually occurred. To correct for multiple substitutions, one could naively consider 
that substitutions at different sites are independent and equally likely, leading one to 
an unbiased estimate for the divergence rate as 16.2% per Nhc million years, where 
Nhc is the number of millions of years ago that human-chimpanzee divergence 
occurred; or equivalently, 16.2/Nhc% per million years. If one supposes that 
substitution rates along the segment are variable, then the corrected estimate will be 
higher. The effect of interdependence between substitution events at different sites is 
not absolute. Note that if the naive estimate is valid, then the correction factor is 
small, and can certainly be ignored over the post-Eve period. In other words, there 
is no need to correct the observed inter-human divergences. 

Vigilant et al. [40] take a different approach. There are basically two kinds of 
substitutions that can occur: transitions and transversions. Vigilant et al. observe 
that on the constructed tree, the ratio of transitions to transversions is 15: 1. Then, 
assuming that multiple transversions do not occur, this leads to a corrected estimate 
of the divergence rate of 11.5-17.3% per million years, given that human-
chimpanzee divergence occurred between 4 and 6 million years ago. 

We are therefore left with a dilemma: either the naive estimate is hopeless, or the 
constructed tree is wrong (or both!). There is clearly a need for more research in this 
area, especially since the divergence rate is a key parameter for estimating the age of 
Eve. Wakely [42] has made some progress in modelling substitution rate variability 
along the segment, and gives a summary of the recent work on this topic. Note that 
this entire discussion rests upon the estimated time of human-chimpanzee diver-
gence, and the assumption that the rate of divergence has not changed since then. 

Finally, Vigilant et al. [40] consider all pairs of individuals whose most recent 
common ancestor, according to the constructed tree, is at the root of the tree, and 
calculate the average divergence between such pairs. Apparently, Vigilant et al. 
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feel it is not necessary to correct these observed divergences for multiple 
substitutions. This average is then compared with their estimated rate of divergence, 
leading to an estimate for the age of Eve between 166000 and 249000 years ago. 
The naive estimate for the rate of divergence would lead to an estimate between 
718 000 and 1060 500 years ago, or as much as 1650 000 years if human-chimpanzee 
divergence occurred 9 million years ago. 

In this section we will demonstrate that it is not necessary to construct a tree in 
order to make inferential statements about the age of Eve. Instead we will model the 
genealogy via branching processes. For similar work in this vein, see [19], [17]. 

3.2. A n  alternative approach to dating the ancestor. It is thought that mtDNA is 
inherited primarily from the mother. This assumption allows us to restrict our 
attention to single-sex populations, and so we are not forced to make questionable 
assumptions about the mating behaviour of people. According to the molecular 
clock hypothesis, substitutions occur randomly along lines of descent at a constant 
rate. Neutrality is assumed; that is, the occurrence of substitutions along a particular 
line of descent is independent of the family tree structure and geographical location 
of individuals, and that substitutions along distinct lines occur independently of each 
other. The divergence rate is very small, so over the time period we are considering 
here (the post-Eve peribd) we can assume that each substitution produces a new 
type, that is, reverse substitutions do not occur. Thus, if the most recent common 
ancestor of two individuals died s million years ago, the number of differences 
between their mtDNA types will be approximately Poisson with mean 2us, where u 
is the substitution rate (in units of number of substitutions per million years). Now 
suppose two individuals are sampled randomly from the current population, and S 
denotes the rate of divergence (in units of percentage divergence per million years). 
Note that if 1denotes the sequence length, then S = 2ull. If we have a model for the 
genealogical structure of the population, then the expected amount of divergence 
between the mtDNA sequences of the two individuals will be equal to the expected 
time back to the common ancestor of the two individuals (under our model, in units 
of millions of years), multiplied by the divergence rate, 8. 

We will assume that the (effective) female population size follows a Markov 
branching process ZTwith mean offspring 1+ aIT,  where T = T,/A; T, is the time to 
our most recent common ancestor, A is the mean effective lifetime (or generation 
time)and CY E R is our 'growth' parameter. 

To get an indication of how fast the population might have been growing, suppose 
the estimate of 200000 years were correct. Then a straightforward moment 
calculation based on this model with offspring variance 0' =2, mean (effective) 
lifetime 25 years and current (effective) female population size 1billion, yields the 
rough estimate 15 = 13.7 (cf. Equation (7) below). (Note that although the above 
chosen parameter values seem somewhat arbitrary, the estimate I5 is quite 



430 NEIL O'CONNELL 

insensitive to apparently large adjustments in these values, and remains in the 
'slightly supercritical' framework for quite a wide range.) 

If we start time at the death of Eve, then in the notation of Section 1, NT(0) =2. 
(Eve, by definition, had at least two daughters with descendants alive today, and 
Theorem 2.2 tells us that three such daughters is extremely unlikely: NT(O-) = 1and 
NT(0)2 2 together imply that NT(0) =2 with high probability when T is large.) Then 
ZT(T) is the current (effective) female population size. 

Using our approximation results, we can simultaneously estimate a and T, based 
on the observations ZT(T) and the average pairwise divergence in a random sample 
of n contemporary individuals d,,. We will assume for the moment that the 
divergence rate S is known. Denote by A the mean effective lifetime of an individual. 
By Theorem 2.1, 

We will assume that the sample size is such that 

To see that this is not such an unreasonable assumption, suppose T =200000, 
a = 12, a2= 2 and A =25. Then, by Theorem 2.1, 

where X and Y are independent exponential random variables with means equal to 
1. In this case, the assumption (8) is certainly valid for n < 10'. So we also have, by 
Theorem 2.3, 

where 

(11) y (a )  = 1- 2 [1 - qf + 2q, log q,] dr, 

and 

(12) 
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Figure 1. Plot of y(a) 

One can simplify (11) to get 

y(a)  = 1-2a  -I/ 
1 U 

[I - u2+2u log u] du, 
0 (1 - u ) ~ ( u+ K )  

where 

Note that y(a)  is positive and increasing in a ,  f < y(a)  < 1, and y(a)  1as a -+ w. 
A plot of y(a)  is shown in Figure 1, for -5 5 a S 15. 

For the simplest moment based estimates, assuming that 8, a2and A are known, 
just set 

ff2i1.a -
ZT(T) =7(e" - I),

A a 

and solve for (B, T). Although 0' is unknown, when a is sufficiently large the actual 
value (within reason) will not affect the estimates considerably. (This is due to the 
dominating exponential term in Equation (15).) The same is true for A. 

Note that in theory this approach assumes that a is small relative to T. However, 
Remark (3) of Section 2 tells us that a large value of a corresponds to the 
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(significantly) supercritical case, and the estimate of T obtained from (16) will still 
make sense. 

3.3. Performance of the estimators. Suppose we have a sample of n individuals, 
chosen at random from the current population: as before we will assume that 

From now on, we will implicitly assume the conditioning {NT(0) =2, Zr(T) 2 n). 
We begin by calculating the variance of the estimator 

where S and a are assumed known. Denote by dij the divergence between 
individuals i and j, and by Kj the time back to their most recent common ancestor. 
Then 

1 
var d, = 

(18) 

where 

and 

Note that a, + b, + c, = 1. It follows immediately from (18) that for n sufficiently 
large, 

var f;=cov (42, d34) 
6 2 ~ ( f f ) 2* 

In particular, ignoring small order terms, (19) gives us a lower bound for var ?"a. In 
other words, this is the best we can do if we base our inference solely on the average 
pairwise divergence in the sample. It is open to question how much room there is for 
improvement. In fact, (19) would give us an exact lower bound if 



433 The genealogy of branching processes 

since we also have by the correlation (or Cauchy-Schwartz) inequality that 

(21)  var d122 cov (d12,  d34).  

Although the statement (20)  might seem intuitively obvious at first sight, it is 
actually far from being clear, as we shall see later. A trivial upper bound for var a,, is 
var d12,again by the correlation inequality. 

When the parameters S and CY are not known, our estimate 

is more variable. The major contributor to this extra variance is the variance due to 
our uncertainty about the rate of divergence S :  this has a multiplicative effect. O n  
the other hand, in the range of possible parameter values we are dealing with in this 
problem, the variability of the other parameter estimates has only a small effect on 
the variance of p:. 

We will now attempt to make the quantities that appear in (18) more explicit. To 
begin with, 

var d12= E var (d12I T12)+ var E(d12I T12) 

(23)   = SETl2+ S 2  var T12 

= ST, y ( a )  + S2TZp(cy), 

where, in the notation of Sections 2 and 3.2, 

1  2 
r P ( D ,  > r T )  dr - [[ P ( D ,  > r T )  d r ]  (24)  

1 r9r 
'4 1o (1- qr) 

[I -q? + 2qr log q,] dr - [I - y ( a ) ] 2 .  

This gives us an exact upper bound: 

Ta T : p ( f f )var Pn5-+ ---
" - S y ( f f )  ~ ( a ) ~' 

Note that p ( a ) +  0 as a +01, SO that the upper bound tends to T,/S. But this is not 
sharp: we will see later that in fact var ?':= 0, when n is large and a +01. 

To  calculate cov (d12,  dZ3) ,  recall that 
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Figure 2. Typical genealogy relating three individuals. The components of the tree are labelled with their 
associated divergences e , ,  e2 and e, 

and set 

Observe (see Figure 2 )  that e l ,  e2 and e3 are conditionally independent given T12and 
T23. NOW on {Ti2< Tz31, 

E(d12d23  I T129 T23) =E[(el  + e2) (e2  + e 3 )  1 T12, T23I 

=E(el I q 2 ,  T23)E(e2 I T12, T 2 3 )  + E(e: I T12, T23) 

+ E ( e l  I q 2 ,  T23)E(e3I T12, T23) 

+ E(e2 I q 2 ,  T23)E(e3I T12, T23) 

Applying the obvious symmetry, and taking expections, we get 

Thus, 

To simplify the key quantity cov (d12)d34)we need to introduce some notation. 
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The set {q:i, j = 1,2,3,4)  almost surely consists of exactly three elements, which 
we rank in ascending order and denote by 0 < zl < z2< z3. For each n E S4, the 
permutation group on four elements, define events 

(33) An = Tn(l),rr(2); Tz(l),lr(3); =(21 ' 7 2  = 23 Tz(l),r(4)), 

(34) B ,  = { T I  = Tr(l) ,rr(2);  22 = 23 =Tn(3),7r(4); Tz(l),n(3)), 

and set 

A =  U A,, B =  U B,. 
X E S ~  neS4 

Note that P ( A  U B )  = 1, P ( A  nB )  =0, and by symmetry, 

(36)  P (A ,  I A )  =P(B, I B )  = &. 
The events {A,, B,:z E S4} represent the 48 possible tree topologies relating our 
four chosen individuals. 

Write E,  for conditional expectations given u ( z l ,  z,, z3, A) .  Let 

and observe that on C, 

almost surely. On A nCcJthe total divergence on the tree can be written (see Figure 
3)  as the sum of five independent components {e,}:such that 

(39)  Ecel = Ece2= $8zl 

(40)  Ece3= $S(z2- z l )  
E e4 ='28~2(41)  c  

E e  = I  (42) c  5 2 (273- ~ 2 )  

Figure 3. Typical genealogy on A n CCrelating four individuals. The components of the tree are labelled 
with their associated divergences e l ,  . . . ,e5 
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almost surely, and 

It follows that on A nCc, 

almost surely. Similarly, on B nCc, 

almost surely. Combining (38),(44) and (45) we get 

almost surely. Taking expectations, 

and so 

cov (dl , ,  d3,) = s 2 E ~ , , ~ , ,+ $ ~ E ( T , , AT3,- r , )  
(48) + 4SE(q2r\  T3, - r2)+- 82T2Y(cr)2. 

Unfortunately, this is as far as we have been able to go in computing 
cov (d12 ,  d34). In principle, it should be possible to calculate the unknowns in the 
expression (48) using Theorem 2.2, although I do not presently see how. It would 
also be helpful to know the distributions of the branch points ( T , ) ,  and perhaps 
P(A) . These are topics for future research. 

However, we can argue that when cr is large, cov (dl , ,  d34) is small. We observed 
earlier (cf. Equation ( 1 1 ) )  that as c r +  w, ET,,/T, y ( a ) +  1. This implies that for 
each i, j, z, converges in probability to T,, so by (48) we have cov (dl , ,  d3,) +0, as 
required. This means that when a and n are sufficiently large we can do well in 
estimating T,with the only significant source of variability being that of our estimate for 
the rate of divergence. For example, suppose a = 12. Then ET12/T,= y(12) =0.917, 
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and we would expect var ?: to be relatively low, given a reasonably large sample 
and a good estimate for the rate of divergence. 

Finally, we compare the expressions (32) and (48), and question our 'conjecture' 
(20). We can show, as one would expect, that ET2T23Z ET12T3,. However, in 
attempting to establish (20), the difficulty arises that dl ,  and d34pick up a high level 
of correlation on B fl Cc (cf. Equation (45)). To see this more clearly, note that by 
(3% 

and so 

almost surely. On the other hand, by (30), we can condition on the events 
{AK,B,: n E S4) to get 

almost surely. The problem is that on B n {r3< r1+ r,}, 

almost surely. One might surmise that there is something to be gained in the 
difference EcT12T23- EcT12T3,,but this is not the case, as we shall see in the proof of 
the following 'consolation' lemma. 

Lemma 3.1. Eq2TZ32 ETI2T3,. 

Proof: In the above notation, we have by (49), 

almost surely. Similarly, by conditioning on the events {A,, B,: rr E S,), we get 

almost surely. It follows that 
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almost surely. Clearly, the second term is almost surely non-negative, since z3> z2 
almost surely. To show likewise for the first term, consider the function 

1f (r, s, t )  = 6rs - Art - fst  + i s2+ at2. 

It suffices to show that f is non-negative on O l  r S s  5 t. First we observe that 
f (r, s, t )  =0 ,  if s = t. Moreover, 

a 1 1-f (r, s, t )  = ~t - 6r - f s  2 0 ,  
at 

on O I r I s S t ,  and so we are done. 

3.4. Some numbers at last. We would now like to apply our method to some data: 
but where does one find a random sample of individuals? Strictly speaking this is 
simply not available, as yet. However, we will do our best with what we have. 

Of the 189 individuals considered by Vigilant et al. [40], we have hand-picked a 
somewhat representative sub-sample of 19, without being deliberately biased in any 
way. The larger the sub-sample, the less representative it becomes; the smaller it is, 
the less useful it becomes. Our sample consists of 6 Asians, 1 Native Australian, 1 
Papua New Guinean, 6 Europeans and 5 Africans. 

A histogram of the 171 pairwise divergences in this sample is shown in Figure 4. 
The average divergence was found to be 2.8%. 

In June 1992, according to the Population Reference Bureau Estimates, the human 
population size was approximately 5.412 billion. This gives us about 1 billion as a 
rough estimate for the current effective female population size, assuming that about 
half the population is female, and that the current female population represents 

Figure 4. Pairwise divergences among sample of 19 individuals 
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TABLE1  
Estimates for a and T,  

12.5 billion 1.8 
2.7 
4 

5 billion 1.8 
2.7 
4 

30 billion 1.8 
2.7 
4 

approximately 2.7 generations. We will soon see that our estimates are quite 
insensitive to variations in this figure, so we need not be very exact. 

Note that the estimates B and pa are functions of h Z T ( T ) / v 2and 6; these are 
shown in Table 1, for various different values of h Z T ( T ) / u 2and 6. If Z T ( T )= 1 
billion, v2= 2 and A = 25, then A Z ~ ( T ) / ~ '= 12.5 billion. Although these choices 
seem somewhat arbitrary, we can see from Table 1 that any kind of realistic 
deviations from these values will have little or no effect on the estimates. The most 
important parameter is 6, the rate of divergence. 

4. Concluding remarks 

To derive our estimates for the growth rate, a, and the age of Eve, T,, we simply 
calculated the expected current population size and the expected average pairwise 
divergence in a sample of contemporary individuals, and assumed the other 
parameters were known. We are therefore not fully utilising the information 
contained in the sample. It might be helpful to know more about the joint 
distribution of the painvise divergences (dii), or the joint distribution of the 
respective frequencies of distinct types, in a finite sample. The latter would be 
analogous to Ewens' sampling formula for the infinite-alleles Wright-Fisher model 
for neutral evolution. Ewens' sampling formula is not applicable to the Eve problem 
because it is based on the assumption that the population size is constant over time. 
Although a sampling formula for branching processes is a desirable goal, it might be 
the case here that an explicit description for the distribution of the pairwise 
divergences would be more useful, for the following reason. Typically, the 
frequencies of each distinct type in a sample are very low, in which case such a 
sampling formula would not be very powerful, For our sample of 19, there are 19 
distinct types! This could change however, with the availability of larger 'random' 
samples. 

In particular, it may be possible to estimate a, T, and 6 simultaneously, without 



440 NEIL O'CONNELL 

having to rely on human-chimpanzee comparisons, thus avoiding the assumption 
that the rate of divergence has been constant ever since the human and chimpanzee 
lines diverged. 

Taib [37] has made some progress in this direction by obtaining an expression for 
the asymptotic proportion of alleles (types) with exactly j representatives in the 
population, for a supercritical branching process with neutral mutations. Unfortun- 
ately, this result is not directly applicable here. 

There are many directions one could take on this quest. An obvious starting point 
would be to say something useful about the relative proportions of distinct types in 
the current population using our model. There are results about random partitions 
and stickbreaking schemes that may be useful in this regard, in particular those due 
to Pitman [29], [28]. For example, if one could prove that the random partition of 
types has a stickbreaking structure, then according to a theorem of Pitman ([29], 
Theorem 2) the distribution of the random partition must belong to a simple 
two-parameter family, where explicit sampling formulas are known [28]. 

It is also convenient to approximate the process by a Dawson-Watanabe 
superprocess with branching mechanism +(z) = a z  - v2z2/2, conditioned to be 
currently non-extinct, where the spatial motion is a jump process on the space of all 
possible types (see, for example, [8], Example 10.4.4, for a description of this kind of 
spatial motion). Facts about the distribution of the random partition of types can 
then be described in terms of solutions to the corresponding partial differential 
equations. 

An alternative approach would be to apply the results of Etheridge and March [7] 
and Perkins [26] on the relationship between Dawson-Watanabe superprocesses 
and (inhomogeneous) Fleming-Viot processes. Ewens' sampling formula is valid for 
the homogeneous Fleming-Viot process. 

Finally, we remark that using the coalescent model (an approximation for the 
genealogy in the Wright-Fisher and Fleming-Viot models, where the population 
size is held constant) Lundstrom et al. [24] have derived simultaneous estimates for 
the branch times (and in particular, the time of common ancestry) and substitution 
rates along a nucleotide sequence, based on molecular data collected from a finite 
sample of contemporary individuals. This is the most generally applicable approach 
available up to now, but unfortunately relies on the assumption that the total 
population size has been roughly constant over time. 
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