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Analytic and simulation studies were carried out in order to predict the average
geographic area occupied by alleles in a continuously distributed population. The
properties of three statistics were investigated: the sum of the squared distances
between members of allelic classes, the sum of the root mean squared distances, and
the sum of the squares of the numbers of alleles. The expectations of these
quantities can be obtained analytically from both stepping-stone and branching
diffusion models. The predictions of these two models are similar for wide ranges
of parameter values and are consistent with the simulation results from a stepping-
stone model. These results suggest that measures of the geographic distribution of
alleles can be useful for estimating average dispersal distances at loci, such as
minisatellite and microsatellite loci, at which mutation rates are high enough that
they can be estimated with confidence.  «" 1993 Academic Press, Inc.

1. INTRODUCTION

The use of new biochemical methods has led to the discovery of
previously unsuspected levels of variation at individual genetic loci.
Minisattelite (or VNTR) loci (Nakamura er al.,, 1987) have alleles that are
distinguished by the numbers of repeats of nearly conserved nucleotide
sequencies of 30 or so nucleotides. Recently, Jeffreys, Neuman, and Wilson
(1990) have further resolved alleles at VNTR loci by detecting the presence
or absence of restriction sites within individual repeats. Microsattelite loci
are similar but the repeats are of only 2, 3, or 4 base pairs (Boerwinkle
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et al, 1989). Both classes of loci differ from other loci in being highly
polymorphic, with heterozygosities approaching 95 %, and in being highly
mutable, with mutation rates on the order of 102 to 10~ * (Jeffreys et al.,
1991). As a consequence, they are of considerable practical importance in
forensic applications and as markers in genetic mapping.

There have been extensive surveys of human populations for allele
frequencies at both kinds of loci and VNTR loci are being used in surverys
of animal populations as well (Dallas, in prep.). Nichols and Balding
(1991) consider the effect of population subdivision on the allele frequency
distributions at VNTR loci, but they concentrated on forensic applications.
Highly mutable loci are also of interest from an evolutionary perspective.
The high mutation rate suggests that the individual lifetime of an allele is
very short. Therefore, the geographic area occupied by an allele is likely to
indicate the extent of recent dispersal in a species. In this paper we
investigate that possibility and show that certain measures of the
geographic distribution of alleles generally depend in a relatively simple
way on mutation rate and average dispersal distance. Because the mutation
rates at highly mutable loci can be estimated with some confidence, our
results suggest that geographic surveys of allele frequencies at such loci can
be used to obtain rough estimates of average dispersal distances in
relatively recent dispersal events.

We are concerned with a species that is continuously distributed in
space. Our results are based on both analytic theory and computer simula-
tions. The analytic theory is based on two kinds of models, stepping-stone
and branching diffusion models. In the stepping-stone model, there is
density regulation in each population so the population density remains
uniform. The simulation model is also a stepping-stone model. The
branching diffusion model has no local density regulation. Felsenstein
{1975) has discussed the problems with using such a model in a population
genetic context and Sawyer (1976a) showed that in general in a two-
dimensional habitat, infinitely large clumps tend to form even if individuals
are initially uniformly distributed on a plane. We show that despite this
apparently fatal problem with the model, we can obtain sensible results
from it. In fact, the results we obtain are nearly the same as those from the
stepping-stone model, analyzed by Malécot (1968), Weiss and Kimura
(1965), Sawyer (1977, 1979), and others. The simulation results are in
agreement with the analytic theory and support the use of the analytic
theory for parameter values that cannot be simulated.

2. ANALYTIC THEORY

Suppose we sample individuals from a geographically structured popula-
tion, over a finite area A, and record the location and allelic type of each
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individual sampled. If there are M distinct types present, denote by
k, .., k 4 the respective numbers of each type and for each j, by x4, ..., xf,'(l
the locations of the k; type-j individuals. Denote by [x— y| the distance
between locations x and y. For our purposes 4 will be a bounded subset
of Z¢ or RY and |-| the standard Euclidean distance. We are interested in
the statistics

Mk k; ‘ '
S=22 % 2 Ixj=x,l (1)

Jj=11I=1 m=I+1

for =0,1,2. For >0, S, ; can be thought of as the total variational
spread of individual allelic types. Note that

M
Sao= 0 kjlk;—1)

Jj=1
counts the number of terms in the summation. The ratio S, ;/S,, is
therefore the average “area” occupied by an individual allelic type, or more
precisely, the average squared/absolute distance between individuals of the
same type. How do the properties of these statistics depend on (i) the
model assumed, and (ii) the parameters of the model ?

We study the behaviour of these statistics under the two seemingly
different models for the underlying population dynamics. The first is the
general stepping-stone model, where local density is assumed constant. The
second is a Markov branching diffusion model. In both cases we assume
the occurrence of selectively neutral mutations at a constant rate, where
each mutation produces an entirely new allelic type. The key parameters in
both models are the mutation rate and the variance of dispersal distances
(the “migration variance”), although we see how the “shape” of the dis-
tribution of dispersal distance can also play a role. We observe that if the
mutation rate is small and the migration variance sufficientlfy high, both
models yield essentially the same results. We formulate both models in
general terms and then specialize to the case in which the population den-
sity is unity and the distribution of dispersal distance is Gaussian. Results
for other population densities are given for the stepping-stone model and
can be obtained for the brancing difusion model by rescaling units of
length.

2.1. Stepping-Stone Model

The model we assume here is described in detail by Sawyer (1976b,
1977), and is essentially the stepping-stone model of Malécot (1968) and
Weiss and Kimura (1965), with general migrations. Suppose we have a
population of individuals which is held at constant local density of N per
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site in the infinite d-dimensional lattice. These sites are called “colonies.”
The population undergoes random mating within each colony, independent
migration between colonies according to a migration density g(x), and is
subject to selectively-neutral mutations occuring at rate w per individual
per generation, where each mutation produces an entirely new allelic type.

In what follows we assume that the creatures are diploid, although we
approximate this by assuming that there are 2N independent haploid
individuals at each site. Note therefore that results for haploid species can
be deduced by replacing 2N by N. We say two individuals are identical by
descent (i.b.d.) if and only if they are of the same allelic type.

Now suppose we sample one individual from each colony in a bounded
region A. Set

Sis= 2 lx=y°1(x ) (2)

X, veA xF VY

where 1, 1s the indicator function of the set
B = {(x, y): Individuals sampled at x and y are i.b.d.}.

The expectation of this quantity, at equilibrium, is given by

ES,.s= Y lx—pI"Hx—yu), (3)

xyed x#*y

where I(x— y, u) is the probability that, at equilibrium, two randomly
chosen individuals at locations x and y are i.b.d. The quantity /(x — y, u)
has been studied extensively in the literature. Exact formulas are known
(Malécot, 1968; Sawyer, 1976b) and can be computed, but for our pur-
poses it is convenient to appeal to the approximation results of Sawyer
(1977) for I(x, u) when |x| >0 and « is small (or more precisely, when
Ix|/o = O(u'?)). We first consider the two-dimensional case. Analogous
results in one and three dimensions are given in the appendix.

For notational convenience assume that g(x) is spherically symmetric
with variance ¢? (in each direction) and 3 |x|°*° g(x)< o for some
0 <a<2. Then (Sawyer, 1977, Th. 2),

_2Ky(1x] \/2u/)
= In(INo® + Cy) —log(aa) | T 0w )

I{x, u)

uniformly for 0 <& < |x| \/Z < 1/, for any ¢ > 0, where K is the modified
Bessel function of the second kind and the constant C, depends on the
migration density. For Gaussian migrations C, =0 is independent of ¢. For
Laplace (double-exponential) migrations with ¢ > \/5 say, Co~ —0.13
does not contribute very much to I(x, u). However, for any value of ¢
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there are migration densities for which C, can be arbitrarily large. For
example, Malécot’s “K-distribution” has this property (cf. Sawyer, 1977).

Let A,=[0,91°nZ? and write S,, for S, ;. Using the above
approximation we have for small u,

1o _2Kollx— 11 /2ui0)
I an(INGT £ Cy) — log(2u)’

ES,;~ Y  Ix-— (5)

NoyeE Ay XFE Y

We can now approximate this sum by an integral to get

2
ES .~
S 4n(2Na> + C,) — log(2u)

e

x 1 7.>,x*r‘sK<x—v——>dxd', 6
R P A e LT U

for some 0 < p < 1. The choice of p is somewhat arbitrary in this kind of
approximation, but only really matters when ¢/u is small, which is not in
the range of interest. We can simplify the above four-dimensional integral
to get the two-dimensional one,

sl ()

ES, >~
“° 7 4n(2Na? + Cy) — log(2u) \,

2 NEV /
x[EqZ—qu+L}dr+j qr"*'KO( Zur)
g g

2 2
2
x[(g—2cos"%> q2+2q./r2—q2—q2—%] dr>,

from which we obtain the limiting result

4n x V2u
1' ~2E A~ S+1 :
Jm 4 ESy s >  ONT T Co) = log(2) f,, kK < o ’) dr

But for small u,

o /2 o /
J r"*‘K()( ur)dr:f r‘”'KO(——zur)dr
I3 g 0 o
— .\_/.g—.'; e r 5_‘*’_2 ?
o 2 /)
(see, for example, Gradshteyn and Ryzhik (1964, p. 684)) so we get

povg (M20) 1T (842)
62 (F)

2
li -2 o~ d
Jm S O Ne T Cy) — log(2)
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In particular, when N =1 and the migration is Gaussian (C,=0) we have

yoaz ( /2u)_5_2 F(5+2>2
g

2

lim ¢ 2ES,;~ (8)

g— x 8710’2—]0g(211)

Now that we have established the convergence in expectation of ¢ S, ;,

it is natural to ask for more. Do we in fact have almost sure convergence ?

It is difficult to prove rigorously, but we can argue heuristically that the

exponential decay of genetic correlation over large distances is sufficient to

allow a “strong law” effect, giving us almost sure convergence. If this were

the case, then we could deduce a strong limit law for the average

squared/absolute distance between individuals of the same type, S, /S, 0,
namely, that with probability 1,

as g — oo, for 4 =1, 2. Note that the limiting quantity in (9) is independent
of C,, so this result is independent of the shape of the migration
distribution.

It is also worth remarking that the above calculations (suitably
normalized) are also valid if individuals are sampled from only a limited
number of sites in the sampling area, provided this done with sufficient
regularity (for example, every second or third site) and the sampling is
sufficiently “dense” relative to u and ¢ so that the integral approximation
is justified. We have observed by simulation that the same is true if the
individuals are selected at random from the sampling area, which is often
a more realistic situation. If the proportion of individuals sampled is p,
then the statistics should be divided by p? to have expectations given by the
above. More generally, to apply the results given in this section or in the
appendix for d dimensions, the appropriate normalizing factor is p>*.

2.2. Branching Diffusion Model

In this section we assume that the individuals are haploid, are initially
dispersed randomly throughout R? according to a uniform Poisson
random field, and reproduce according to a critical homogeneous Markov
branching diffusion process with transition/migration density p(x, y, ¢), and
mean 1 exponential lifetimes. We also assume that this population is
subject to selectively neutral mutations occurring at a constant rate u per
individual per generation. This model is described in detail by Sawyer
(1976a), and in some sense it is the natural analog of the stepping stone
model without local density regulation.

653:44/1-9



116 O’CONNELL AND SLATKIN

It is notationally convenient to represent the individuals alive at each
time ¢ by an (infinite) random measure x4, on R in such a way that for
each bounded measurable subset 4 cR? pu,(4) is the number of
individuals alive in the set A4 at time r. (In the notation of Sawyer (1976a),
u,(Ay=N ,(t).) The quantities of interest can now be defined as

Tas()= ][ 1x=1* Lot ) (d) po (@), (10)
where

B,= {(x, y): there exist, at time ¢z, i.b.d. individuals at
locations x and y}.

We can now proceed to take expectations of the above quantity and apply
the results of Sawyer (1976a) on probabilities of identity by descent for
this model. But first, it is important to point out that this model is not
stationary, and hence cannot be studied in equilibrium like the stepping-
stone model. As time passes, the population forms clusters; these clusters
become more and more dense, and fewer and farther between. But we can
still look at what happens for large times, and we find that the statistics
of interest to us display a certain stability over time and converge in
expectation to non-trivial limits.

To calculate the expectation of T, ;(r) we note that in the notation of
Sawyer (1976a) we can write (informally)

Elg, . yu,(dx) p,(dy) = P(Ji.b.d. individuals at x and y at time ¢)
=C(t, x, y) w(t, x, v) dx dy,

where C(t, x, y) is the probability that individuals found at locations x and
y are identical by descent, and w(¢, x, y) dx dy is the probability that there
are individuals at locations x and y to be found, both formally defined in
Sawyer (1976a) as the limiting quantities

C(t, x, y)= ) ﬂlirr;ﬁ 'P(some pair in 4, Bis ib.d.|u,(4), u,(B)>0),
| -P( (A)=pn(B)=1) "
. K, =H, =
= 1
R S TV E TV N

where A denotes Lebesgue measure on R% So we have

ETos(t)=[[ 1x=y1° Cltx y)wit, x, y) dx dy, (12)
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We consider the case when the basic migration process is Brownian
motion in R with infinitesimal variance ¢2, i.e.,

plt, x, y) = (2no’t) "2 exp[ — (x — y)*/26%1].

We assume that the mean population density is unity: results for other
population densities can be obtained by rescaling units of length. It follows
from the results of Sawyer (1976a) that in this case

14
C(, %, y) wit, x, y):j ~2wp(2s, x, y) ds.
0
So if we set

22U, x—y)=[ " e *p(2s, x, y) ds,

0

we obtain
lim ET,a(0)=[] | 1x—31° g,2u x— y) dx dy. (13)

Again, we restrict our attention to the two-dimensional case and, to avoid
repetition, refer the reader to the Appendix for analogous results when
d=1 or 3. In this case we have (see, for example, Sawyer, 1976a)

(lx— v \/f;>

1
g2(2u,x—y)=ZI?K0
Set 4,= [0, ¢]* and write  ;(¢) for T, ,(¢). Then

s r’Ko(:x n*/_>dxdy (14)

But this is the same integral with which we approximated ES, ; for the
stepping stone model, up to a multiplying factor (and with the lower
bound ¢=0). It can be simplified as before to get

2 S 2
llin‘l‘ ETq.a(t):EEO:r"“KO( Gur>
< 2u
|:2q —2gqr + }dr-f—f ‘“’KO( - r)

2
x[(%—Zcos“q>q +2g rz—qz—qz—%]dr>,

lim ET, ;

11— o
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and we get an analogous limiting result

) '2_ —5-2 22
lim ¢~2 lim ET‘N;(!):2"02<—\/;E) r(fs-;f-—) . (15)

g o

Note that when u is small and o is sufficiently large (what “sufficiently
large” means will depend on the value of u), these results agree with the
corresponding results for the stepping stone model with one haploid
individual per colony and Gaussian migration (Egs.(6) and (8)). To
illustrate this, set

lim,_ , ET, ;(1)
ES,; ’

2

r(c*, u)= (16)

where we assume Gaussian migration in both cases, and for the stepping-
stone model that we have one haploid individual per colony. Then
comparing (6) and (14) we see that

4no? —log(2u)

r(c?, u)= 5 )

4no

If it were possible to formulate a strong limit law for the ratio
T,s(t)/T,q(t) as g and ¢ tend to infinity, simultaneously perhaps, then we
would expect the same limit as in the analogous stepping stone model for
small ¥ and for any value of ¢ > 0.

3. SIMULATION MODEL

The simulation model assumes a two-dimensional (L x L) lattice of loca-
tions each of which contains a single diploid individual. Each individual is
characterized by the two alleles at a single diploid locus. Generations are
non-overlapping and all alleles are assumed to be neutral. In each genera-
tion, each individual is assumed to “choose” both of its alleles from the
individuals in the preceeding generation according to a specified distribu-
tion of dispersal distances. The simulation program used the coalescent
approach described by Hudson (1990) and modified appropriately.
Initially, there is a sample of genes drawn from specified geographic loca-
tions. Then the program simulated the ancestry of the genes in this sample
to produce a gene genealogy. Once the genealogy is obtained, mutations
then occur from an assigned state of the ancestor to yield the allelic states
of all the genes in the sample. There are two advantages to this approach.
First, it is unnecessary to deal with genes that are not ancestral to one of
the genes in the sample, which makes the simulation much more efficient.
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Second, because the entire gene genealogy is simulated in each replicate,
there is no question that a stochastic equilibrium is reached. For the dis-
persal stage, we assumed that the probability of dispersal depended only on
the distance separating two locations and used discretized versions of either
an exponential or Gaussian distribution of dispersal distances in each
direction. That is, for points that are i steps apart in one direction and j
steps in the other, the probability of dispersing that distance is f,f;, where
f; is the one-dimensional distribution. At the edges of the lattice, we
assumed a reflecting boundary. In the simulation, when the same gene was
chosen as the ancestor of two genes in the next generation, a coalescent
event occurred and the number of genes in the genealogy was reduced by
one. If a third gene choose the same ancestor, another coalescent event
would occur producing a trifurcation in the tree.

This simulation model differs from Hudson’s (1990) because we did not
assume that only one coalescent event could occur in each generation. That
assumption would be incorrect for the parameter values we used. Once the
gene genealogy was obtained in a replicate, we assigned an ancestral state
to the root and then let mutations accumulate at each node, with the
number of mutations occurring on a branch being a Poisson distributed
random variable with mean «7, where u is the mutation rate per generation
and T is the branch length in generations.

We assumed two different mutation models. The “infinite alleles model”
assumed that each mutant was new to the population, which implies that
all alleles in the same allelic class are identical by descent. We used this
model for comparison with the analytic results described above, which
assumed the infinite alleles model. We also assumed the “stepwise muta-
tion” model which was originally used in the analysis of electrophoretic
data (Ohta and Kimura, 1973; Wehrhahn, 1975). This model may be
appropriate for microsatellite loci (Valdes, Slatkin, and Freimer, 1993). In
the stepwise mutation model, the allele at the root is assigned to be of some
state, which represents the repeat number; we can arbitrarily set that
number to 0. When a mutation occurs, the repeat number changes by 1.
A more general model would assume changes of more than one step, but
the one-step model represents the extreme case in which it is most likely
that alleles in the same allelic class might not be identical by descent. The
question is whether this assumption leads to any significant differences
from the infinite alleles assumption.

For each case we simulated, we assumed that genes were sampled from
a square quadrat of length ¢ on a side which was centered in the L x L lat-
tice. We allowed for two possibilities for the distribution of alleles sampled
from a quadrat, they could be either regularly spaced or randomly chosen.
If they were regularly spaced, we assumed a minimum spacing of 4, so the
sample size is n=(g/h)>. If h=1 every individual in the ¢ x g quadrat was
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sampled. If individuals were randomly chosen, we specified, n, the sample
size and sampled without replacement from the ¢ x ¢ quadrat. We assumed
that one gene from in each individual was sampled from each individual in
the sample.

For each case, the parameter values needed were L, the size of the lattice,
g, the size of the quadrat from which individuals were sampled, u, the
mutation rate, and o2, the variance in dispersal distances. In addition we
had to specify the functional form of the dispersal distribution, either
exponential or Gaussian, and we had to specify either A, the spacing of
samples when samples were regularly spaced or, n, the number of
individuals sampled when individuals were randomly sampled. At the end
of each replicate the values of (qz/nz)Sq'(; for 6=0,1, and 2 were
computed. These values were then averaged over a specified number of
replicates, usually 100, to obtain the results for that set of parameter
values.

3.1. Simulation Results

We restricted our simulations to parameter values for which the value of
L, the size of the lattice did not matter. We found that for relatively small
values of 62, 2, 4, or 8, and values of g of 50, 100, or 200, that the results
did not depend on L as long as L > 2q. Therefore we set L =2q in all the
simulations. We also found that there was no detectable difference between
the Gaussian and exponential distributions of dispersal distances, as is
consistent with the analytic theory. Therefore, we used an exponential
distribution for most of the simulations.

Table I shows the results for our simulations in the case in which every
individual in the quadrat was sampled (h=1). The predictions of the
analytic theory for both the stepping-stone and branching diffusion models
are included for comparison. As we can see, there is fair agreement between
the simulation results and the analytic results for the stepping stone model
(Eq. (6)) and the agreement is better for smaller mutation rates. The exact
results for the branching diffusion model (Eq. (14)) are larger, as would be
expected from Eq. (17). Clearly the asymptotic results (Eqgs. (7) and (15))
are not very good for these parameter values.

Table II shows that the details of the sampling scheme are not important
for the values of (¢°/n*) S, ; for § =2 or § =1, as predicted by the analytic
theory. However, the value of (¢°/n*) S, , does depend on n. That reveals
a limitation of the analytic theory as an approximation for these parameter
values. The dependence on # is less for smaller w.

Table III shows the results for one set of parameter values with different
sample sizes under random sampling. The results for =2 and d=1 are
consistent with the analytic prediction that they should be independent of
sample size. In effect, the values of an integral are being estimated by doing
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TABLE 1

(1/¢*) E[S, ;] from Simulations and Analytic Theory

121

Stepping stone

Branching diffusion

q u [ 4  Simul. Eq.(6) Eq.(7) Eq. (14) Egq.(15)
50 0.01 2 2 23278 3000.41  9277.92 3467.44 10722
1 140.2 172.13 364.34 198.92 421
0 118 14.8 232 17.1 26.8
50  0.005 2 2 58976 70464 366429 8337.5 43357
1 300.2 3442 1017.5 407.3 1203.9
0 215 245 458 29.04 54.2
50 0.001 2 2 279793 293409 889968 36596 1.1 x 10®
1 11237 1151.6 11051.8 14364 13785
¢ 611 62 2225 77.33 2715
100 0.005 2 2 132426 17181.1 366429 20329.2 43357
1 5020 609.9 1017.5 721.7 12039
0 2869 336 45.8 39.8 54.2
100 0.005 4 2 199460 24738.1  76495.8 27804.5 83504
1 6124 710.4 1501.99 7754 1639.6
0 2769 30.98 478 338 522
100 0.001 2 2 124750 140125 889968 174773 1.1 x 10
1 3019.1 3284.1 11051.8 4096.2 13785
0 106.34 112.2 222.5 140 277.5
100 0.001 4 2 136405 144773 19x10° 162672 2.1 x10°
1 30035 30576  16539.6 34356 18584
0 9292 913 2355 102.6 264.5
200 0.01 2 2 5673.2 7308.4 9277.92 84459 10722
1 239.2 307.7 364.34 355.6 421
0 16.23 20.6 232 23.8 26.8
200 0.001 2 2 305,069 375,869 889,968 468,809 1.1 x 10°
1 5368.2 6198.5 110518 77312 13785
0 146.56 158.8 222.5 198.1 2775
200 0.04 4 2 856 1033.06 1219.36 1084.97 1280.6
1 414 60.1 677 63.1 711
0 306 5.52 6.1 5.8 6.4
200 0.02 4 2 28799 3816.4 4844.87 4060.77 5155.1
1 118.3 160.67 190.26 170.96 202.44
0 762 10.8 12.11 11.45 12.89
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TABLE 11

(g%/n*) S, s for Random and Uniformly Distributed Samples

d=2 o=1 6=0

o’ =2, ¢ =200, average of 100 replicates

u=0.01
h=1 (n=40,000) 5673.2 239.2 16.2
h=4 (n=2,500) 5248.0 246.4 326
Random (x# =2,500) 51744 244.8 334
u=0.001
h=1 (n=40,000) 305,069 5368.2 146.6
h=4 (n=2,500) 301,587 5386.6 163.8
Random (n = 2,500) 299,152 5267.2 161.9

a Monte Carlo integration with fewer and fewer points. The expectation
remains the same, although the variation among replicates increases with
decreasing sample sizes, as expected. The results for § =0 do not fit the
analytic predictions. For these parameter values, smaller sample sizes result
in missing low frequency alleles and overrepresenting the higher frequency
alleles. That results in larger than expected values of S, ,. There is the same
bias in §,, and S, , but the low frequency alleles contribute so little to the
sums of distances that the effect is not apparent.

We ran a few cases with the stepwise mutation model and found that
there is a substantial difference between the results for that model and
those for the infinite alleles model for the same parameter values. Some

TABLE 111

Comparison of Simulation Results for Different Numbers of
Individuals Randomly Sampled

Sample size 6=2 d=1 é=0

6?=2, u=001, ¢ =50 (averages over 100 replicates)

2500 51744 244.8 334
2000 5162.0 2420 372
1500 5306.7 250.7 443
1000 5184.0 248.0 57.8
500 5171.6 240.0 974
300 47110 2313 152.0
100 5211.0 240.1 421.7

Note. The values given are ¢°S, ,/n’.
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TABLE 1V

Comparison of Simulation Results for S, ;/¢7 in the Infinite Alleles
and Stepwise Mutation Models

8=2 o=1 6=0

6?=2, u=001, g =50, h=1 (n=2500)

Infinite alieles 23278 140.2 11.8

Stepwise 38,7259 13184 60.3
6¢?=2, 4=0001, g=50, h=1 (n=2500)

Infinite alleles 27,979.3 1123.7 61.1

Stepwise 118940.3 3874.7 160.0

Note. Averages over 100 replicates.

results are shown in Table IV. The values of all three statistics are much
larger than in the infinite alleles model, as might be expected because that
model allows the possibility that an allelic class can have a much wider
geographic distribution than in the infinite alleles mode.

4. DiscussioN AND CONCLUSIONS

Our results show that there are some relatively simple statistics
describing the area occupied by different alleles. As our measure of area we
used both the mean square distance between all copies of an allele and the
root mean square distance. As statistics, we used the sums of mean square
(S,.2) or root mean square (S, ) distances and the difference between the
sum of the squares of the numbers of alleles in each class and the total
number of individuals sampled (S, o). The reason for using these statistics
is that they can be predicted by the analytic theory. Either of the ratios
S,2/S,0and S, /S, , could be thought of as the average area occupied by
alleles at a locus. It is important to realize, however, that these definitions
of average area differ from the usual definition of average area, in which
the average mean square or root mean square distances are computed for
each allelic class and then the overall average is taken. That average cannot
be easily related to analytic theory and differs substantially from what can
be computed analiytically. Although it would be possible to use simulations
alone to find the dependence of the average area on the other parameters,
we feel it is preferable to use statistics whose expectations can be found.

Our results are not restricted to high mutation rati loci but it seems
likely that they will be most applicable to such loci. Relatively high muta-
tion rates imply that relatively small areas will be occupied by different
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alleles, which means that boundary effects will be less important. Further-
more, in many high mutation rate loci, ¥ can be estimated so there is at
least hope that observations of the geographic distributions of alleles can
lead to estimates of the neighborhood size (which is proportional to the
variance in dispersal distances multiplied by population density). The
analytic theory shows that population density cannot be estimated
separately using this approach. Although no such geographic surveys have
yet been completed some are being carried out now.

One advantage to our results is that the analytic theory provides some
tests of consistency of the underlying theory. In particular, the statistic S, ,
should be inversely proportional to the mutation rate if the assumptions of
the model are valid. That could be tested by making comparisons across
loci. Also, given the value of S_, the relationship between S, and S, is
predicted by Eq. (9).

Our results also show that this approach to analyzing geographic
patterns will be useful only in cases in which the infinite alleles model is
reasonable. That may be true for VNTR loci in which variation between
repeats can be detected. That is probably not true for microsatellite loci
which might well fit the simple stepwise mutation model.

There are many potential problems with applying our approach to data.
The assumption of a homogenecous population uniformly distributed in an
region and having the same dispersal tendencies throughout the region is
unlikely to be valid for any real species. Furthermore, except in plantations
or other artificially constructed populations, it is unlikely that individuals
can be sampled randomly or with even spacing. Instead samples are taken
opportunistically and sample sizes for an area vary because of unforseen
conditions. Nevertheless, our results show that the geographic distributions
of alleles at loci for which mutation rates are known do provide informa-
tion about dispersal. Generalizations of our results that do take spatial
inhomogeneities into account could lead to further understanding of
dispersal, particularly if information from different loci is combined.

APPENDIX: ANALYTIC RESULTS IN ONE AND THREE DIMENSIONS

For the Stepping-Stone Model

In one dimension, if we assume that the migration density has finite fifth
moments and variance o2, then (Sawyer, 1977, Th. 1)

I, ) = 2P 1] V/2u) +0(u) (17)
1 +\/2u(4N0+ Cy)

uniformly for 0 <e<|x| \/;<M< oc, for any ¢>0, M < oo, where the
constant C, depends on the migration density. For Gaussian migrations
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Cy= —0.8238 is independent of 6. Proceeding as in the two-dimensional
case, if we set 4,=[0,94]1nZ and write S,, for S, ;, we can apply
Sawyer’s approximation (17) and replace the sum by an integral to get

exp( — |x| /2u/o) (18)
1 +/2u (4N + Co)

ES,s=[f Ix— "

which can be calculated explicitly. In particular,

g 'ES,o=q '[1+./2u(4Ng + Cy)] '

2 |: g 5T
x [—o|l g+ (e”'\’z“""’—l)]
\/:l 9 < 2u

— 14 /2u(4Ng + Cy)] ! \/za,
u

and

g 'ES, =q '[1+/2u(4Na + Cy)] "

2
X [9— gle ¥ 47 + 1)+ ﬁ oiu e VYT )]
u

2

_>[1+\/5&(4Na+c(,)]""7.

As in the two-dimensional case, we conjecture that ¢~ 'S,, and ¢ 'S,
converge almost surely to the above quantities, in which case we could
deduce that with probability 1,

qilsq,l o

q*‘Sq,o—) \/Z_u

In three dimensions, if we assume that the migration density has finite
fourth moments and (for notational convenience) is symmetric with
variance a? in each direction, then (Sawyer, 1977, Th. 3)

N exp(— x| \/2u/a) 12
>0 = 7oy aNe 1 oy L H oW (19)

uniformly for 0<s<l,\'l\/ﬂsl/£, for any £>0, where the constant
C, depends on the migration density. For Gaussian migrations C,=
Y (4nu) 7 is independent of o, As before, we can use (19) in (3) and
approximate by an integral to calculate ES, ;.
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For the Branching Diffusion Model

In one dimension we have

exp(—|x— y| /2u/o)
g 2u,x—y)= ,
20 \J2u

so if we set 4,=[0, g] we get

X _ , sexp(—|x—y| \/ﬂ/a) '
lim ETq‘(,-(t)—HAs Ix— | ot T dx dv,

11— 0

which again, up to a multiplying factor, is the same integral we obtained
for the stepping stone model (18), and just as in two dimensions, the
results we obtain here will approximately agree with those of the stepping-
stone model with one haploid individual per site and Gaussian migration
provided u is small and o sufficiently large.

In three dimensions,

exp(— |x — y| 2u/o)

4n|x — y| g?

g3(2u5 X — }')=

and similar remarks apply.
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