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We consider the first collision time for a set of independent one-dimensional zero-drift Wiener processes. 

For the 3-process problem, the first collision time corresponds to the first exit time of Brownian motion 

in a cone in W’, and we can apply the results of Spitzer (1958) and Dante DeBlassie (1987) to obtain 

its distribution. In the case where the processes have equal infinitesimal variance, a more elementary 

method yields nice closed-form results for the 3-process problem, and second order approximations for 

the general n-process problem. This case (for three processes) corresponds to Brownian motion in a 

cone of angle $r. The latter approach can in fact be applied to any system of independent (identical) 

Markov processes, provided the single-barrier hitting time distributions are known for the individual 

processes and their differences, and provided the processes can’t jump over each other. 

first exit times * collision times * particle systems * cones 

1. Introduction 

In this paper we explore the properties of T, the first collision time for a set of 

independent one-dimensional Wiener processes/particles, where the first collision 

time is defined to be the first time at which any two particles collide, and establish 

the duality between this problem and that of determining the distribution of the 

first exit time for Brownian motion in a cone. Such a duality was anticipated by 

Arratia (1979), in his PhD thesis, and here we make his ideas more explicit. The 

cone problem has been treated by Spitzer (1958) and DeBlassie (1987). 

This connection, once established, provides new results for both problems. The 

results of Spitzer and DeBlassie carry over to the collsiion problem in its most 

general form. In the collision problem, the special case when the processes have 

equal variance is treated by a direct method, which in turn provides an explicit 

result for the corresponding cone problem (where no explicit results were provided 

by the works of Spitzer and DeBlassie). 
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The ideas and methods used in this paper may also be helpful in treating aspects 

of other collision problems, many of which have been considered in the past. For 

example, collision probabilities for randomly touching particles and bodies have 

been investigated in Wiel (1979,1981,1989), Papaderou-Vogiatzaki (1983), 

Papaderou-Vogiatzaki and Schneider (1988), and Enns et al. (1984). For a survey 

on collision probabilities for convex bodies, see Schneider and Wieacker (1984). 

These authors have generally treated the problem of randomly touching convex 

bodies, or random subspaces touching a convex body. Hill and Gulati (1980) 

calculated collision probabilites for two random walking particles, with special 

consideration given to the location of collision. One-dimensional systems of point- 

particles with collisions have been investigated by Duerr et al. (1987) and Sznitman 

(1989); systems of non-colliding point-particles by Karlin (1968); and systems of 

coalescing and annihilating random walks by Arratia (1981) and Cox (1989). 

The structure of the paper is as follows. We will first consider the case when there 

are just three particles. In this case, we show in Section 2 that the first collision 

time corresponds to the first exit time for Brownian motion in a cone (wedge) in 

lR*, and we can therefore apply the results of Spitzer (1958), and Dante DeBlassie 

(1987). In Section 3 we consider the special case when the three processes have 

equal variance. This assumption simplifies the problem greatly and allows for a 

more elegant approach, from which we obtain the distribution of T in closed form. 

This approach also has the attraction that it can be generalised easily and applied 

to a larger class of Markov processes, where we are interested in the probability of 

collision. In Section 4, we deduce (in closed form) the first exit time distribution 

for Brownian motion in a cone of angle HIT in R*, and we conclude that for the 

3-process problem, the restriction imposed on the variances in Section 3 can be 

weakened. In Section 5 we consider the general problem of n Wiener processes 

with equal variances, and derive an asymptotic result for the first collision time with 

the help of the trick used in Section 3. 

2. First collision time for three Wiener processes 

Consider three independent one-dimensional zero-drift Wiener processes, {Xi 1 

t 2 O}l=, , with infinitesimal variances u:, CT:, vi, respectively, and suppose 

XA-Xi=a,>O, 

Xi-Xi=a,>O. 

Define the first collision time, T, by 

7 = inf{s > 0 (Xi, -X( = 0, some i #j}. 

We wish to calculate the distribution of 7. In this section, we show that r corresponds 

to the first exit time for Brownian motion in a cone in R2. Define a new process 
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(X Y) by 

x= x*-x2-a, 

w ’ 
Y=X>$$'. 

Then 

Q- = inf{s > O( (X,, Ys) E dA}, 

where 

Now if we define the process (B’, B2) by 

B’ = 
X-Y 1 a, 
-+- 

s, s, ( 

where S, = SD(X, - YI) and S,= SD(X,+ YI), then B= (B’, B2) is a Brownian 

motion in R2, with 

. 
(2) 

Now 

~=inf{s>O(B,~6~C(m)}, 

where C(m) is the upright cone in R2 defined by 

c(m)={(X,Y)E~21Y>mlxl}, 

and 

(3) 

(4) 

m = m(a:, a:, CT:, = s,/s,. (5) 

Note that 

(6) 

(7) 

We have therefore reduced the problem to determining the distribution of the first 

exit time of Brownian motion from a cone in R2. This is given by the next theorem, 

due to Spitzer (1958). 
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For O<p <2n, set 

and, for p G y < 2~~ let F(P, y) be F(P) rotated through an angle y about the origin. 

Let W be a two-dimensional Brownian motion, with W, = (R cos a, R sin CX), 

where R > 0,O < (Y < 27r, and let T be the first exit time of W from the cone F(P), 

where p > cr. Let u( R, a, p, t) = Pr{ T > t}. Then: 

Theorem 2.1 (Spitzer, 1958, Section 2). u(r, (Y, /3, t) can be obtained by inverting the 

integral transform 

u( r, a, p, t) ePr2’2s dr, 

for s > 0, where 

2 
D(S, a, t) =-tan’ 

sin(arr/p) 

> 
q 

rr sinh((v/fl) sinh-‘a) ’ 

Theorem 2.2 (Spitzer, 1958, Theorem 2). For p > 0, ETP < ~0 if and only if 2p/? < IT. 

This criterion is independent of the initial position WO~ F(P). 0 

Putting things together, we get: 

Theorem 2.3. Ifr is the first collision time for {X:1 t 2 O}: given by (l), and if we set 

/3 = 2 tan~‘(l/m), (Y = tan-‘( BQ BA) -tan’ m, 

R =J(B;)2+(B;)2, 

where m and B, are given by (5) and (2), then 

Pr{r> t} = u(R, a, /3, t), 

where u is dejned in the statement of Theorem 2.1. 

We also have, by Theorem 2.2, that for p> 0, ErP <a if and only if 4p X 

tan-‘(l/m) <n. 0 

Dante DeBlassie (1987) considered first exit times for Brownian motion in a cone, 

in a more general setting, and from here we learn something about the tail of the 

first collision time distribution. 

Theorem 2.4 (Dante DeBlassie, 1987, Corollary 1.3(a)). In the notation of Theorem 

2.3, for some constant C and for fixed R, a, 

Pr{ 7 Z t} - Ct-n’(2P), 



N. O’Connell, A. Unwin / Collision times and exit times from cones 295 

It is interesting to note that Theorem 2.4 agrees with the asymptotic results of 

Evans (1985, Lemma 4) and Uchiyama (1980, Theorem l.l), concerning Brownian 

motion in a cone in R2. 

Note that the transformation of the original problem into the problem of determin- 

ing the first exit time distribution for Brownian motion in a cone has a converse, 

to make the analogy complete. More precisely, if B is a Brownian motion in lR2, 

initially at B0 E C(m) for some m E [ 1, a), and if TV is the first exit time, then using 

equations (2) and (5) we can find values (a,, u2, a:, (~2, CT:) so that the distributions 

of rc and r are identical. We will make use of this fact later in Section 4. 

Some interesting special cases of this analogy are given in the following examples. 

Example 2.1. If o: = u: = V: = a2, then m = ~6, and 

&)= -- ( a,-4 u,+u, 
u& ’ u&i > 

Example 2.2. If F: = a: and ai = 0, then the problem reduces to the trivial case 

where m=l. If a:=az and a:=O, then m=l+v% 

Example 2.3. If u: # a: and g: = 0, then 

Note that for a2 fixed, as o, + 0, m?co; and for o, fixed, as a2 + 0, mll. Thus, since 

m is continuous in both variables on (1, co), given any m E (1,~) we can choose 

(a,, a2) so that (10) is satisfied. 

The analogy described in this section can be extended easily (but with a great 

degree of algebraic tedium!) to higher dimensions. The first collision time for n 

independent Wiener processes can be represented as the first exit time for Brownian 

motion in a cone in [Wn-‘, and the distribution of this first exit time was calculated 

by Dante DeBlassie (1987). (Note, however, that to apply the results of Dante 

DeBlassie there are certain regularity conditions for the cone that need to be 

checked.) 

3. First collision time for three Wiener processes with equal variance 

In this section we consider the special case when the three processes have equal 

variance. This simplifies the problem greatly, and allows for a more elementary 

approach, yielding nice, closed-form results. The results of this section will be 

applied in Section 5 when we consider the general problem of determining the first 

collision time distribution for n independent Wiener processes. 
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Let {Xt 1 t 3 0) be a one-dimensional Wiener process with zero drift, infinitesimal 

variance a’, and X0 = 0. Then for x, t > 0, 

Pr ,m;x, X, 2 x 
1 G I 

=ZPr{X,2x}=Z{l-@(--$)}, 

where @(. ) is the standard normal distribution function. Define 

Y(Y) = 2{1- @P(Y)}. (LO) 

Now consider three independent one-dimensional zero-drift Wiener processes, 

{xfIt~o}:=,, each with infinitesimal variance CT’, and suppose 

X:,-x;=a,>o, Xz-Xi=a,>O. 

Let T be defined as before, by (l), and let 

7ij=inf{s>O(X’,-XJ=0} for i#j. (11) 

Then, by (9), 

aI 
Pr{r12s t}= y - ( > ufi ’ 

Pr{ r23 c t} = y 
a2 

( ) 
- 
aV5 ) 

Pr{713 
@+a2 

<tt)=y - 
( 1 av5 . 

(12) 

(13) 

(14) 

The probability of a collision between any pair of these processes in the time 

interval (0, t] is given by the following theorem. 

Theorem 3.1. 

Proof. 

Pr{7~t}=PrU{~~~f] 
i#j 

= Pr{(7,2c t)u (7235 2)) 

= Pr{T12< f}+Pr{TZjs t}-Pr{T12~ t, T23Q t>. 

We now show that 

(15) 
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Let E, = {TV s t}, and notice that 7r2 A ~23 s 713. Then 

Pr{r 12s t, 723< t)=Pr{E129 E23) 

= Pr{E129 E23; 7 = 7*21+ W&2, E23 ; 7 = T23) 

= W&2, El3 ; T = 712) + NE,, , 63 ; 7 = 723} 

= Pr{ E,, ; T = ~~~~ + Pr{ E,3 ; 7 = 723} 

= WEI 

Thus, (15) becomes 

= Pr{ 7,3 G t}. 

as required. q 

Remark. It is also possible to do a ‘coupling’ type sample path proof of Theorem 

3.1. By defining slightly modified collision times you can observe that the events in 

question are actually equal, hence their probabilities are equal. 

Corollary 3.2. (i) For jixed a,, a,, c2, 

da,+ alai t-3/2 
Pr{T>tl- 4J- 3 , 

7ru 

(ii) If a, = a2 = a, then for fixed t, g2, 

1 
Pr{r> t}----_ 

2J;; 
-3t-3/2a3 

3 

as a-,0. 

(iii) (i) implies that for p > 0, ErP < ~0 if and only ifp <i. 

(iv) Forjixed a,, a2, u2, 

Pr{r> t} 

t 1 
,__1 _.Ja 

J( 

_ _ e-a:/(4u2f)+L e-a:/(4u2f) 
1 

C-(5+n2)2/(4~zf) 

= al 4+a2 > 
7 

a2 

as t+o. q 

Note that Corollary 3.2(iii) agrees with the result obtained from Theorem 2.2 in 

Section 2. In this case, p = fn. Corollary 3.2(iv) follows from the well-known order 

relation: 

I 

co 
e -d/2 du _ 1 e-xv2 as x-++co. 

X X 
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It is worth noting that the approach taken in this section does not require that 

the processes be Wiener. In fact, we can easily modify the results to determine the 

first collision time distribution for three independent Markov processes of the same 

type, with the same parameters, but of course each having different initial value. 

This can be done as long as the distribution of the first hitting time (of a single 

point barrier) is known for the individual processes and their differences, and 

provided the processes are ‘continuous’ in the sense that they cannot jump over 

each other. For example, we can consider a trio of independent one-dimensional 

Markov diffusions with the same infinitesimal drift and variance. This extension 

may provide some useful applications. 

4. First exit time of Brownian motion from the cone F&r) 

In this section we make use of the analogy described in Section 2 and the results 

of the previous section to obtain an explicit form for the distribution of the first 

exit time for Brownian motion in the cone F&-r). We can then in turn deduce 

explicit results for the various first collision problems corresponding to this specific 

cone. 

The problem considered in the previous section can be translated into the problem 

of determining the first exit distribution of a Brownian motion from the cone C(a) 

in R*, using the analogy described in Section 2. C(a) is just a rotation of the cone 

F&T). Given that a Brownian motion is initially at (x, y) E C(A), the distribution 

of the first exit time 7 is given by 

where 

and y is 

b, =tvqx+y/m (17) 

b2=t&(y/&-x), (18) 

defined by (10). 

It seems difficult (if not impossible) to extend this approach further to Remark. 
obtain explicit results for other cones. 

(16) 

We now turn our attention to the set of 3-process collision problems that corres- 

pond to this specific cone, F&IT), thus weakening the restriction imposed on the 

variances in Section 3. 

Consider the three independent Wiener processes introduced in Section 2, and 

suppose 

m(a:, a:, a:) =&, (19) 
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where m is defined by (5). Then, from the results of Section 2, the distribution of 

the first collision time is the same as the distribution of the first exit time for Brownian 

motion in C(a), which we have just determined in closed form. Thus, we have a 

closed-form solution for the distribution of the first collision time, as long as the 

variances of the processes satisfy (19). 

It can be easily checked that the surface defined by (19) is given by 

s ={(x, y, z) E R3(4y2 = (x+y)(y+ -2); x, y, z> 01 

= {(x, y, z> E E-8’) (X/Y, Y/Z) E L; x, Y, z’ 01, 

where 

(20) 

(21) 

(22) 

5. First collision time for n independent Wiener processes with equal variance 

Consider n independent one-dimensional zero-drift Wiener processes {Xi};, each 

with infinitesimal variance a2, and suppose that for i = 1, . . . , n - 1, X6 - Xh+:’ = 

a > 0. Consider the events: 

n-1 

Ei( t) = {Xs = Xi+‘, some s < t}, E(t)= u J??,(t). 
i=l 

Now E,(t) is the event of a collision occurring between Xi and Xi+’ in the time 

interval (0, t], and E(t) is the event of a collision occurring between any pair of 

these processes in the time interval (0, t]. 

By Theorem 3.1, we have for each i, 

J’Ei(t)uEi+l(t)=2y(d)-y(2d), 

where d = a/m, and y is defined by (10). 

We will make use of the following lemma to obtain an approximation for PE (t) 

when d is large. 

Lemma 5.1. As d+ 00, y(2d)/ y3(d) + 0. 0 

The proof is straightforward, using only the properties of the normal distribution 

function and l’H8pital’s rule. The main result of this section is: 

Proposition 5.2. For fixed n, as d + 00, 

PE(t)=(n-l)y(d)-;(n-2)(n-3)y2(d)+o(y3(d)). 
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Proof. For convenience we write E for E(t), and Ei for Ei( t). By the principle of 

inclusion/exclusion, symmetry, independence and Theorem 3.1, we have: 

n--l 
PE=P u Ei 

i=l 

=C PE,- C P(E,E,)+ C P(E,E,E,)-. . . 

i-zj i<j<k 

=(n-l)?(d)-(n-2)y(2d)-$(n-2)(n-3)y2(d) 

+o(r3(4, 7(247(d), P(E,&%)). 

By Lemma 5.1, y(2d) = o(r3(d)), and thus y(2d)y(d) = o(y3(d)) also. And clearly, 

P(E,E2E3) s P(E,EJ = ~(24. 

Thus, 

PE(t)=(n-l)y(d)-$(n-2)(n-3)y2(d)+o(y3(d)), 

as required. 0 

Corollary 5.3. Forjixed n, as d + 00, 

PE(t)-(n-l)y(d)- ~~epd2’2. 0 
J 
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